
Pilot Operated 2 Port Solenoid Valve

VXD Series

Pilot Operated 2 Port Solenoid Valve

Heated water High temperature oil

Enclosure

Flame resistant

mold coil material

Low-noise

anatmaton

Metal noise reduced

by the rubber bumper

Flange piping

Piping variations (Thread piping, One-touch fitting,

Flame resistance

IP65 ()

VXD Series

By providing a bumper and clearance, we reduced the collision sound of the core when ON (when the valve is open). Because of the clearance, when using highly viscous fluids such as oil, the armature does not get stuck and the responsiveness when OFF (when the valve is closed) is improved.

Power consumption

4.5 w (VXD23 to 25)

W (VXD26 to 27)

10.5 w (VXD28 to 29) Improved armature durability

Body material

Air

 $\begin{array}{l} Aluminum (VXD2_A^3) \\ Resin (VXD2_A^3) \\ C37, Stainless steel (VXD2_B^4 to 2_D^6) \\ CAC408 (VXD2_E^7 to 2_G^3) \end{array}$

Water/Oil/Heated water/ High temperature oil

C37, Stainless steel (VXD2 $_{A}^{3}$ to 2 $_{D}^{6}$) CAC408 (VXD2 $_{E}^{7}$ to 2 $_{G}^{9}$)

Built-in full-wave rectifier type (AC specification: Insulation type Class B/H)

- Improved durability Service life is extended by the special construction. (compared with current shading coil)
- Reduced buzz noise Rectified to DC by the full-wave rectifier, resulting in a buzz noise reduction.
- Reduced apparent power (Class B, N.C. valve)
 - 10 VA \rightarrow **7** VA (VXD23 to 25) 20 VA \rightarrow **9.5** VA (VXD26 to 27)
 - 32 VA \rightarrow **12** VA (VXD28 to 29)
- Improved OFF response Specially constructed to improve the OFF response when operated with a higher viscosity fluid such as oil.
- Low-noise construction Specially constructed to reduce the metal noise during operation.

Port size Orifice diamete Body Model Size Thread Flange One-touch fitting 1/4 3/8 32A 1/2 3/4 40A 50A ø10 ø**3/8**" ø12 1 Aluminum 0 0 84 0 Resin 0 VXD2 10A 10 mmø 0 0 0 C37 15A _ _ _ _ _ 0 0 0 Stainless stee C37 0 0 104 _ _ _ VXD2⁴ 15 mmø 15A Stainless stee 0 0 _ _ _ _ _ _ _ _ 0 C37 _ _ _ _ _ VXD2⁵ 20A 20 mmø tainless ster 0 _ _ _ _ _ _ _ _ _ _ 0 C37 _ _ _ _ _ _ _ _ _ _ VXD2⁶ 25A 25 mmø 0 Stainless stee _ _ _ _ _ _ _ _ _ VXD2_E⁷ 32A 35 mmø _ _ _ _ _ 0 _ _ _ _ VXD2 404 40 mmø CAC408 0 _ _ _ _ _ _ _ VXD2g 0 50A 50 mmø _ _ _ _ _ _ _

SMC

INDEX

Pilot Operated 2 Port Solenoid Valve VXD Series

Comn	non Specifications P. 116	
Selec	tion Steps P. 117	VX2
	For Air	VXK
	Model/Valve Specifications, Fluid and Ambient Temperature, Valve Leakage Rate P. 118, 119	VXD
	How to Order P. 120	VXZ
Ċ	For Water	VXS
	Model/Valve Specifications, Fluid and Ambient Temperature, Valve Leakage Rate P. 121, 122 How to OrderP. 123	
		VXB
	For Oil	VXE
	Model/Valve Specifications, Fluid and Ambient Temperature, Valve Leakage Rate P. 124, 125	VXP
	How to Order P. 126 For Heated water	VXR
O	Model/Valve Specifications, Fluid and Ambient Temperature, Valve Leakage Rate P. 127, 128	VXH
	How to Order P. 129	VXF
5	For High temperature oil	VX3
\bigcirc	Model/Valve Specifications, Fluid and Ambient Temperature, Valve Leakage Rate P. 130, 131	
	How to Order P.132	VXA
.		
	Special OptionsP. 133	
	ructionP. 136	
	nsions	
	Air/Water/Oil	
	ody material: ResinP. 138 ody material: Aluminum, C37, Stainless steel P. 140	
	ody material: C37, Stainless steel	
	lody material: CAC408P. 142	
	Heated water/High temperature oil	
	ody material: C37, Stainless steelP. 148	
	body material: CAC408P. 148	
	-	
	cement PartsP. 155 ary of TermsP. 156	
	oid Valve Flow Rate CharacteristicsP. 156	
	Rate Characteristics	
	fic Product PrecautionsP. 162	
Sheci	IIC FIOUUCI FIECAULIONS P. 164	

VXD Series Common Specifications

Standard Specifications

	Valve construction	1	Pilot operated 2 port diaphragm type					
	Withstand pressur	e	2.0 MPa (Resin body type 1.5 MPa)					
Valve	Body material		Aluminum, Resin, C37 (Brass), Stainless steel, CAC408 (Bronze casting)					
specifications	Seal material		NBR, FKM, EPDM Note 3)					
	Enclosure		Dust-tight, Water-jet-proof type (IP65) Note 4)					
	Environment		Location without the presence of corrosive gases, explosive gases, or constant water adhesi					
	Rated voltage	AC	100 VAC, 200 VAC, 110 VAC, 230 VAC, (220 VAC, 240 VAC, 48 VAC, 24 VAC) Note 2)					
	Rated voltage	DC	24 VDC, (12 VDC) Note 2)					
Coil	Allowable voltage	fluctuation	±10% of rated voltage					
specifications	Allowable leakage	AC	5% or less of rated voltage					
	voltage	DC	2% or less of rated voltage					
	Coil insulation typ	e	Class B, Class H					

Note 1) Electrical entry flat terminal type terminal is IP40.

Note 2) Voltage in () indicates special voltage. (Refer to page 133.)

Note 3) For seal material/EPDM, refer to page 134.

Note 4) For enclosure, refer to "Glossary of Terms" on page 156.

▲ Be sure to read "Specific Product Precautions" before handling.

Solenoid Coil Specifications

Normally Closed (N.C.)

DC Specification

Class B

Model	Power consumption (W) Note 1)	Temperature rise (°C) Note 2)
VXD23 to 25	4.5	50
VXD26, 27	7	55
VXD28, 29	10.5	65

Class H

Model	Power consumption (W) Note 1)	Temperature rise (°C) Note 2)
VXD23 to 25	9	100
VXD26, 27	12	100
VXD28, 29	15	100

Normally Open (N.O.) DC Specification

Class B

Model	Power consumption (W) Note 1)	Temperature rise (°C) Note 2)
VXD2A to 2C	7.5	60
VXD2D, 2E	8.5	70
VXD2F, 2G	12.5	70

Class H

Model	Power consumption (W) Note 1)	Temperature rise (°C) Note 2)
VXD2A to 2C	9	100
VXD2D, 2E	12	100
VXD2F, 2G	15	100

Note 1) Power consumption: The value at ambient temperature of 20°C and when the rated voltage is applied. (Variation: ±10%)

Note 2) The value at ambient temperature of 20°C and when the rated voltage is applied. The value depends on the ambient environment. This is for reference.

AC Specification (Built-in Full-wave Rectifier Type) Class B

Model	Apparent power (VA) Note 1) 2)	Temperature rise (°C) Note 3)
VXD23 to 25	7	60
VXD26, 27	9.5	70
VXD28, 29	12	70

Class H

Model	Apparent power (VA) Note 1) 2)	Temperature rise (°C) Note 3)
VXD23 to 25	9	100
VXD26, 27	12	100
VXD28, 29	15	100

AC Specification (Built-in Full-wave Rectifier Type) Class B

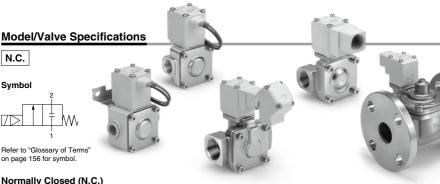
Model	Apparent power (VA)	Temperature rise (°C)
VXD2A to 2C	9	60
VXD2D, 2E	10	70
VXD2F, 2G	14	70

Class H

Model	Apparent power (VA) Note 1) 2)	Temperature rise (°C) Note 3)							
VXD2A to 2C	9	100							
VXD2D, 2E	12	100							
VXD2F, 2G	15	100							

Note 1) Apparent power: The value at ambient temperature of 20°C and when the rated voltage is applied. (Variation: ±10%)

Note 2) There is no difference in the frequency and the inrush and energized apparent power, since a rectifying circuit is used in the AC.


Note 3) The value at ambient temperature of 20°C and when the rated voltage is applied. The value depends on the ambient environment. This is for reference.

VXD Series Selection Steps

Item	Selection item	Page		Symbol			
	Air	Page 118		0			
	Water	Page 121		2		↓ ↓	
Select the fluid.	Dil 🚺	Page 124	\Rightarrow	3	0	VXD2 3 0	A A
	Heated water	Page 127		5	1	0	
	High temperature oil	Page 130		6			
	Size	8A	-	3	0]	
Select "Body material"	", "Port size" and " Selection item		amete	r" fro Symbol		Flow rate — Pressure" of ea	ach flui
	Size	8A					
Select from "Flow rate — Pressure."	Valve type	N.C.		3	2		6
Body material Port size	Body material	Aluminum				VXD2 3 0	AA
Orifice diameter	Port size	1/4	\rightarrow	A	6	- 0	1
	Orifice diameter	10					
Select electrical spec	Selection item			Symbol		,	
Item	Voltage	24 VDC		A	4	[∐] VXD2 3 0 A	À
Select electrical specification.	►			1			

VXD Series

	., 0.0000													
Body			Min. operating pressure			Flow rate characteristics				Max. system	Weight Note 2)			
material	FUITSIZE	(mmø)	Model	differential Note 1, 3) (MPa)	AC	DC	С	b	Cv	Effective area (mm ²)	pressure ^{Note 3)} (MPa)	(g)		
	1/4 (8A)						8.5		2.0			370		
Aluminum	3/8 (10A)						9.2	0.35	2.4			370		
	1/2 (15A) 10 VX	VXD230		0.9	0.7	9.2		2.4			370			
	ø10		VAD230		0.9	0.7	5.6	0.33	1.3			330		
Resin	ø3/8"			0.02			4.8	0.33	0.9	—		330		
	ø12			0.02	0.02	0.02			7.2	0.33	1.5			330
	3/8 (10A)	15	VXD240				18.0	0.35	5.0		1.5	720		
Stainless	1/2 (15A)	15	VAD240				20.0	0.35	5.5			330 330		
steel, C37	3/4 (20A)	20	VXD250						38.0	0.30	9.5			840
	1 (25A)	25	VXD260		1.0	1.0				225		1360		
	32A Flange	35	VXD270							415		5400		
CAC408	40A Flange	40	VXD280	0.03						560		6800		
	50A Flange	50	VXD290							880		8400		

Note 1) Be aware that even if the pressure differential is above the minimum operating pressure differential when the valve is closed, the pressure differential may fall below the minimum operating pressure differential when the valve opens, depending on the power of the supply source (pumps, compressors, etc.,) or the type of pipe restrictions.

Note 2) Weight of grommet type. Add 10 g for conduit type, 30 g for DIN terminal type, 60 g for conduit terminal type respectively. Note 3) Refer to "Glossary of Terms" on page 156 for details on the minimum operating pressure differential, maximum operating pressure differential, maximum system pressure.

Fluid and Ambient Temperature

Fluid temperature (°C)	Ambient temperature (°C)
-10 Note) to 60	-20 to 60

Note) Dew point temperature: -10°C or less

Valve Leakage Rate

Internal Leakage

	Leakage rate (Air) Note	a 1)		
Seal material	VXD23 to 26	VXD27 to 29		
	(8A to 25A)	(32A to 50A)		
NBR (FKM) Note 2)	15 cm ³ /min or less (Aluminum body type)			
	15 cm ³ /min or less (Resin body type)	10 cm ³ /min or less		
	2 cm ³ /min or less (Metal body type)	1		

External Leakage

	Leakage rate (Air) Note 1)					
Seal material	VXD23 to 26	VXD27 to 29				
	(8A to 25A)	(32A to 50A)				
	15 cm ³ /min or less (Aluminum body type)					
	15 cm ³ /min or less (Resin body type)	1 cm ³ /min or less				
	1 cm ³ /min or less (Metal body type)					

Note 1) Leakage is the value at ambient temperature 20°C.

Note 2) For seal material/FKM, refer to "Other options" on page 133 for the selection.

Pilot Operated 2 Port Solenoid Valve VXD Series

For Air

Body	Port size	Orifice diameter	Model	Min. operating pressure	Max. operating pres	Max. operating pressure differential Note 3) Flo		Flow rate	Flow rate characteristics		Max. system	Weight 2)	VXP
material	FUILSIZE	(mmø)	Model	differential Note 1, 3) (MPa)	AC	DC	С	b	Cv	Effective area (mm ²)	pressure Note 3) (MPa)	(g)	
	1/4 (8A)						8.5		2.0			390	VXR
Aluminum	3/8 (10A)						9.2	0.35	2.4			390	
	1/2 (15A)	10	VXD2A0		0.6	0.4	9.2		2.4]	[390	VXH
	ø10	10	VADZAU		0.0	0.4	5.6		1.3			350	
Resin	ø3/8"			0.02			4.8	0.33	0.9	—		350	VXF
	ø12						7.2		1.5			350	
	3/8 (10A)	15	VXD2B0				18.0	0.35	5.0		1.5	740	VX3
Stainless	1/2 (15A)	15	VXD2BU				20.0	0.35	5.5]	[740	VAJ
steel, C37	3/4 (20A)	20	VXD2C0				38.0	0.30	9.5		[860	10/4
	1 (25A)	25	VXD2D0		0.7	0.7				225] [1390	VXA
	32A Flange	35	VXD2E0						415		5430		
CAC408	40A Flange	40	VXD2F0	0.03				_		560	1 [6840	
	50A Flange	50	VXD2G0							880		8440	

Note 1) Be aware that even if the pressure differential is above the minimum operating pressure differential when the valve is closed, the pressure differential may fall below the minimum operating pressure differential when the valve opens, depending on the power of the supply source (pumps, compressors, etc..) or the type of pipe restrictions.

Note 2) Weight of grommet type. Add 10 g for conduit type, 30 g for DIN terminal type, 60 g for conduit terminal type respectively.

Note 3) Refer to "Glossary of Terms" on page 156 for details on the minimum operating pressure differential, maximum operating pressure differential, maximum system pressure.

Fluid and Ambient Temperature

Fluid temperature (°C)	Ambient temperature (°C)
-10 Note) to 60	-20 to 60

Note) Dew point temperature: -10°C or less

Valve Leakage Rate

Internal Leakage

	Leakage rate (Air) Note	1)
Seal material	VXD2A to 2D	VXD2E to 2G
	(8A to 25A)	(32A to 50A)
NBR (FKM) Note 2)	15 cm ³ /min or less (Aluminum body type)	
	15 cm ³ /min or less (Resin body type)	10 cm ³ /min or less
	2 cm ³ /min or less (Metal body type)	

External Leakage

	Leakage rate (Air) Note	1)	
Seal material	VXD2A to 2D	VXD2E to 2G	
	(8A to 25A)	(32A to 50A)	
	15 cm ³ /min or less (Aluminum body type)		
NBR (FKM) Note 2)	15 cm3/min or less (Resin body type)	1 cm ³ /min or less	
	1 cm ³ /min or less (Metal body type)		

Note 1) Leakage is the value at ambient temperature 20°C.

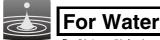
Note 2) For seal material/FKM, refer to "Other options" on page 133 for the selection.

VXD Series

How to Order

CE UK RoHS

Common Specifications							
Seal material	NBR						
Coil insulation type	Class B						
Thread type	Rc*						


			 		/XD2 3 Fluid	d•	A
• Size-	–Valve	<u> </u>	 Bod	<i>.</i>	al/Port size/Orifice d		• Vc
Symbol	Size	Valve type	Symbol	Body material	Port size	Orifice diameter	
3	8A 10A	N.C.	 A B C D	Aluminum	1/4 3/8 1/2 ø10 One-touch fitting	10	A
A	15A	N.O.	 E	Resin	ø3/8" One-touch fitting ø12 One-touch fitting	-	B
4 B	10A 15A	N.C. N.O.	G H J K	C37 Stainless steel	3/8 1/2 3/8 1/2	15	D E F
5 C	20A	N.C. N.O.	L M	C37 Stainless steel	3/4	20	G H
6 D	25A	N.C. N.O.	N P	C37 Stainless steel	1	25	J K
7 E	32A	N.C. N.O.	Q	CAC408	32A Flange	35	M
8 F	40A	N.C. N.O.	 R	CAC408	40A Flange	40	Р
9 G	50A	N.C. N.O.	s	CAC408	50A Flange	50	QR

		* When the body is resin, one-touch fittings					
		are supplied. For body size 32A or more,					
	age/Electri	the ports will be the flange type.					
	age/Electri						
Symbol	Voltage Electrical entry						
A	24 VDC	Grommet					
В	100 VAC	Grommet					
С	110 VAC	(With surge voltage					
D	200 VAC	\suppressor/					
Е	230 VAC						
F	24 VDC	- DL					
G	24 VDC	DIN terminal					
Н	100 VAC	With surge voltage					
J	110 VAC	\suppressor/					
к	200 VAC						
L	230 VAC						
М	24 VDC	Conduit terminal					
Ν	100 VAC	(With surge voltage					
Р	110 VAC	\suppressor/					
Q	200 VAC						
R	230 VAC	all'					
S	24 VDC	Conduit					
Т	100 VAC	(With surge voltage					
U	110 VAC	\suppressor/					
v	200 VAC						
×	230 VAC	N.					
Y	24 VDC	Flat terminal					
z		Other special options					

For other special options, refer to page 133.

	24 VAC				
	48 VAC				
Special voltage	220 VAC				
	240 VAC				
	12 VDC				
DIN terminal with lig	ht				
Conduit terminal with	n light				
Without DIN connect	tor				
Low concentration ozone re	sistant (Seal material: FKM)				
Seal material: EPDM					
Oil-free					
G thread					
NPT thread					
With bracket					
Special electrical entry direction					

Dimensions \rightarrow Page on and after 138 (Single Unit)

Possible to use this for air. Note that the maximum operating pressure differential and flow rate characteristics should be within the specifications for air.

Model/Valve Specifications

Symbol

Refer to "Glossary of Terms' on page 156 for symbol.

Normally Closed (N.C.)

Normally Closed (N.C.)											VXP					
Body	Port size	Orifice diameter	Model	Min. operating pressure	Max. operating pres	sure differential Note 3)	Flow rate ch	naracteristics	Max. system	Weight ^{Note 2)}	VAF					
material	Port size	(mmø)	woder	differential Note 1, 3) (MPa)	AC	DC	Kv	Conversion Cv	pressure Note 3) (MPa)		WD					
	1/4 (8A)						1.6	1.9		480	VXR					
	3/8 (10A)	10	VXD232		0.7	0.5	2.0	2.4		480						
Stainless	1/2 (15A)						2.0	2.4		480	VXH					
steel, C37		15	VXD242	0.02			3.9	4.5		720						
51001,007	1/2 (15A)	15	VAD242				4.6	5.5	1.5	720	VXF					
	3/4 (20A)	20	VXD252			[8.2	9.5	1.5	840	•					
	1 (25A)	25	VXD262							1.0	1.0	11.0	13		1360	VX3
	32A Flange	35	VXD272			[19.6	23		5400	VAJ					
CAC408	40A Flange	40	VXD282	0.03		[26.4	31		6800	10/4					
	50A Flange	50	VXD292				42.8	49		8400	VXA					

Note 1) Be aware that even if the pressure differential is above the minimum operating pressure differential when the valve is closed, the pressure differential may fall below the minimum operating pressure differential when the valve opens, depending on the power of the supply source (pumps, compressors, etc.,) or the type of pipe restrictions.

Note 2) Weight of grommet type. Add 10 g for conduit type, 30 g for DIN terminal type, 60 g for conduit terminal type respectively.

Note 3) Refer to "Glossary of Terms" on page 156 for details on the minimum operating pressure differential, maximum operating pressure differential, maximum system pressure.

Fluid and Ambient Temperature

Fluid temperature (°C)	Ambient temperature (°C)				
1 to 60 Note)	-20 to 60				

Note) No freezing

Valve Leakage Rate

Internal Leakage

Seal material	Leakage rate	(Water) Note 1)
Searmateria	VXD23 to 26 (8A to 25A)	VXD27 to 29 (32A to 50A)
NBR (FKM) Note 2)	0.2 cm ³ /min or less	1 cm ³ /min or less

External Leakage

Seal material	Leakage rate (Water) Note 1)				
Searmateria	VXD23 to 26 (8A to 25A)	VXD27 to 29 (32A to 50A)			
NBR (FKM) Note 2)	0.1 cm ³ /min or less	0.1 cm ³ /min or less			

Note 1) Leakage is the value at ambient temperature 20°C.

Note 2) For seal material/FKM, refer to "Other options" on page 133 for the selection.

VX2 VXK

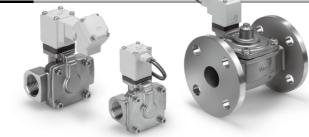
VXD

VXZ VXS VXB

VXE

VXD Series **E** For Water

Model/Valve Specifications



Refer to "Glossary of Terms" on page 156 for symbol.

Normally Open (N.O.)

Body	Port size	Orifice diameter				Model Min. operating pressure Max. operating		sure differential ^{Note 3)}	Flow rate characteristics		Max. system	Weight ^{Note 2)}
material	1 011 3120	(mmø)	woder	differential Note 1, 3) (MPa)	AC	DC	Kv	Conversion Cv	pressure Note 3) (MPa)	(g)		
	1/4 (8A)						1.6	1.9		500		
	3/8 (10A)	10	VXD2A2		0.4	0.3	2.0	2.4	-	500		
Stainless	1/2 (15A)						2.0	2.4		500		
steel, C37		15	VYDODO	VXD2B2	0.02			3.9	4.5	í Í	740	
51001, 007	1/2 (15A)	15	VAD2D2				4.6	5.5	1.5	740		
	3/4 (20A)	20	VXD2C2					8.2	9.5	1.5	860	
	1 (25A)	25	VXD2D2			0.7	0.7	11.0	13		1390	
	32A Flange	35	VXD2E2				19.6	23		5430		
CAC408	40A Flange	40	VXD2F2	0.03			26.4	31		6840		
	50A Flange	50	VXD2G2				42.8	49		8440		

Note 1) Be aware that even if the pressure differential is above the minimum operating pressure differential when the valve is closed, the pressure differential may fall below the minimum operating pressure differential when the valve opens, depending on the power of the supply source (pumps, compressors, etc.,) or the type of pipe restrictions.

Note 2) Weight of grommet type. Add 10 g for conduit type, 30 g for DIN terminal type, 60 g for conduit terminal type respectively. Note 3) Refer to "Glossary of Terms" on page 156 for details on the minimum operating pressure differential, maximum operating pressure differential, maximum system pressure.

Fluid and Ambient Temperature

Fluid temperature (°C)	Ambient temperature (°C)
1 to 60 Note)	-20 to 60

Note) No freezing

Valve Leakage Rate

Internal Leakage

Seal material	Leakage rate	(Water) Note 1)
Searmateriar	VXD2A to 2D (8A to 25A)	VXD2E to 2G (32A to 50A)
NBR (FKM) Note 2)	0.2 cm ³ /min or less	1 cm ³ /min or less

External Leakage

Seal material	Leakage rate	(Water) Note 1)			
Searmateria	VXD2A to 2D (8A to 25A)	VXD2E to 2G (32A to 50A)			
NBR (FKM) Note 2)	0.1 cm ³ /min or less	0.1 cm ³ /min or less			

Note 1) Leakage is the value at ambient temperature 20°C.

Note 2) For seal material/FKM, refer to "Other options" on page 133 for the selection

Pilot Operated 2 Port Solenoid Valve VXD Series

E For Water CE K RoHS

> **Common Specifications** Seal material

Coil insulation type Class B

NBR

					V	XD2	3 <u>2</u> A	
• Size	—Valve	type		Bod	lv material	2 F	Fluid	● Vo
Symbol	Size	Valve type		Symbol	Body	Port size	Orifice diameter	Symb
3	8A 10A	N.C.		A B C	C37	1/4 3/8 1/2	10	A
A	15A	N.O.		D E F	Stainless steel	1/4 3/8 1/2		B
4	10A	N.C.]	G H	C37	3/8 1/2	- 15	D
в	15A	N.O.		J K	Stainless steel	3/8 1/2	-	F
5 C	20A	N.C. N.O.]	L	C37 Stainless steel	3/4	20	G H
6 D	25A	N.C. N.O.]	N P	C37 Stainless steel	1	25	J K
7 E	32A	N.C. N.O.]	Q	CAC408	32A Flange	35	M
8 F	40A	N.C. N.O.]	R	CAC408	40A Flange	40	P
9 G	50A	N.C. N.O.]	s	CAC408	50A Flange	50	Q
								C .

		Coil insulation type Class B	
		Thread type Rc*	VX2
		* For body size 32A or more, the ports will be the flange type.	
Volt	age/Electri	cal entry	VXK
Symbol	Voltage	Electrical entry	VXD
		Grommet	VXZ
Α	24 VDC		VXS
			VAJ
в	100 VAC	Grommet	VXB
c	110 VAC	/With surge \	VXE
D	200 VAC	voltage suppressor	
E	230 VAC		VXP
F	24 VDC		VXR
G	24 VDC	DIN terminal	_
н	100 VAC	With surge voltage	VXH
J	110 VAC	\suppressor/	VXF
к	200 VAC		
L	230 VAC		VX3
М	24 VDC	Conduit terminal /With surge \	VXA
Ν	100 VAC	voltage	VAA
Р	110 VAC	\suppressor/	
Q	200 VAC		
R	230 VAC		
S	24 VDC	Conduit /With surge \	
т	100 VAC	(voltage)	
U	110 VAC	\suppressor/	
v	200 VAC		
w	230 VAC		
Y	24 VDC	Flat terminal	
z	Othe	r voltages and electrical option	

For other special options, refer to page 133.

	24 VAC			
Special voltage	48 VAC			
	220 VAC			
	240 VAC			
	12 VDC			
DIN terminal with light	ht			
Conduit terminal with light				
Without DIN connector				
Applicable to deionized water (Seal material: FKM)				
Seal material: EPDN	1			
Oil-free				
G thread				
NPT thread				
With bracket				
Special electrical entry direction				

Dimensions \rightarrow Page on and after 140 (Single Unit)

VXD Series

Possible to use this for air and water. Note that the maximum operating pressure differential and flow rate characteristics should be within the specifications of the fluid used.

▲When the fluid is oil. –

The kinematic viscosity must not exceed 50 mm²/s. The special construction of the armature adopted in the built-in full-wave rectifier type gives an improvement in OFF response by providing clearance on the absorbed surface when it is switched ON.

Model/Valve Specifications

N.C.

Symbol

Refer to "Glossary of Terms' on page 156 for symbol.

Normally Closed (N.C.)

	.,										
Body	Port size	Orifice diameter			in. operating pressure Max. operating pressure differential Note 3)		Flow rate characteristics		Max. system	Weight ^{Note 2)}	
material	1 011 3126	(mmø)	Woder	differential Note 1, 3) (MPa)	AC	DC	Kv	Conversion Cv	pressure Note 3) (MPa)	(g)	
	1/4 (8A)						1.6	1.9		480	
	3/8 (10A)	10	VXD233		0.5	0.4	2.0	2.4		480	
Stainless	1/2 (15A)						2.0	2.4		480	
steel, C37	3/8 (10A)	15	VXD243	VXD243	0.02		-	3.9	4.5	1.5	720
31001,007	1/2 (15A)	15						4.6	5.5		720
	3/4 (20A)	20	VXD253				8.2	9.5	1.5	840	
	1 (25A)	25	VXD263		0.7	0.7	11.0	13		1360	
	32A Flange	35	VXD273				19.6	23		5400	
CAC408	40A Flange	40	VXD283	0.03			26.4	31	1	6800	
	50A Flange	50	VXD293				42.8	49		8400	

Note 1) Be aware that even if the pressure differential is above the minimum operating pressure differential when the valve is closed, the pressure differential may fall below the minimum operating pressure differential when the valve opens, depending on the power of the supply source (pumps, compressors, etc.,) or the type of pipe restrictions.

Note 2) Weight of grommet type. Add 10 g for conduit type, 30 g for DIN terminal type, 60 g for conduit terminal type respectively.

Note 3) Refer to "Glossary of Terms" on page 156 for details on the minimum operating pressure differential, maximum operating pressure differential, maximum system pressure.

Fluid and Ambient Temperature

Fluid temperature (°C)	Ambient temperature (°C)
-5 Note) to 60	-20 to 60

Note) Kinematic viscosity: 50 mm²/s or less

Valve Leakage Rate

Internal Leakage

	j-					
Seal material	Leakage rate (Oil) Note)					
Seal material	VXD23 to 26 (8A to 25A)	VXD27 to 29 (32A to 50A)				
FKM	0.2 cm ³ /min or less	1 cm ³ /min or less				

External Leakage

Seal material	Leakage rate (Oil) Note)					
Seal material	VXD23 to 26 (8A to 25A)	VXD27 to 29 (32A to 50A)				
FKM	0.1 cm ³ /min or less	0.1 cm ³ /min or less				
Note) Legisge is the value of ambient temperature 00%C						

Note) Leakage is the value at ambient temperature 20°C.

Pilot Operated 2 Port Solenoid Valve VXD Series

For Oil

∧ When the fluid is oil.

The kinematic viscosity must not exceed 50 mm²/s. The special construction of the armature adopted in the built-in full-wave rectifier type gives an improvement in OFF response by providing clearance on the absorbed surface when it is switched ON.

Model/Valve Specifications

Symbol

Refer to "Glossary of Terms"		1.3	1111111	(1/-)	E	9					
on page 1	56 for symbol	l.				an and a second	-				VXE
Normal	ly Open (N.O.)			20						VXP
Body	Port size	Orifice diameter	Model	Min. operating pressure	Max. operating press	sure differential Note 3)	Flow rate cl	naracteristics	Max. system	Weight ^{Note 2)}	VAF
material	Port size	(mmø)	woder	differential Note 1, 3) (MPa)	AC	DC	Kv	Conversion Cv	pressure Note 3) (MPa)	(g)	
	1/4 (8A)						1.6	1.9		500	VXR
	3/8 (10A)	10	VXD2A3		0.4	0.3	2.0	2.4		500	
Stainless	1/2 (15A)						2.0	2.4		500	VXH
steel, C37	3/8 (10A)	15	VXD2B3	0.02			3.9	4.5		740	
	1/2 (15A)	15	-				4.6	5.5	1.5	740	VXF
	3/4 (20A)	20	VXD2C3			[8.2	9.5	1.5	860	•/
	1 (25A)	25	VXD2D3		0.6	0.6	11.0	13		1390	VX3
	32A Flange	35	VXD2E3		1	[19.6	23		5430	VAJ
CAC408	40A Flange	40	VXD2F3	0.03		[26.4	31		6840	10/4
	50A Flange	50	VXD2G3				42.8	49		8440	VXA

Note 1) Be aware that even if the pressure differential is above the minimum operating pressure differential when the valve is closed, the pressure differential may fall below the minimum operating pressure differential when the valve opens, depending on the power of the supply source (pumps, compressors, etc.,) or the type of pipe restrictions.

Note 2) Weight of grommet type. Add 10 g for conduit type, 30 g for DIN terminal type, 60 g for conduit terminal type respectively.

Note 3) Refer to "Glossary of Terms" on page 156 for details on the minimum operating pressure differential, maximum operating pressure differential, maximum system pressure.

Fluid and Ambient Temperature

Fluid temperature (°C)	Ambient temperature (°C)
-5 Note) to 60	-20 to 60

Note) Kinematic viscosity: 50 mm²/s or less

Valve Leakage Rate

Internal Leakage

Seal material	Leakage rate (Oil) Note)					
Seai materiai	VXD2A to 2D (8A to 25A)	VXD2E to 2G (32A to 50A)				
FKM	0.2 cm ³ /min or less	1 cm ³ /min or less				

External Leakage

Seal material	Leakage rate (Oil) Note)					
Searmatenar	VXD2A to 2D (8A to 25A)	VXD2E to 2G (32A to 50A)				
FKM	0.1 cm ³ /min or less	0.1 cm ³ /min or less				

Note) Leakage is the value at ambient temperature 20°C.

VX2

VXD Series

How to Order

(E LK ROHS

VXD2	3	3	Α	A
	Flu	uid 🖣		

3 For Oil

Common Specifications

Seal material	FKM
Coil insulation type	Class B
Thread type	Rc*

* For body size 32A or more, the ports will be the flange

•Size	—Valve	type	•Boo	ly material	/Port size/Orif	ice diameter		
Symbol	Size	Valve type	Symbol	Body material	Port size	Orifice diameter		
			Α		1/4			
3	8A	N.C.	В	C37	3/8	1		
	10A		С		1/2	10		
	15A		D	0	1/4			
Α	ISA	N.O.	E	Stainless steel	3/8	1		
			F	51001	1/2			
			G		3/8			
4	10A	N.C.	н	C37	1/2			
	15A	<u> </u>	J	0	3/8	15		
в	ISA	N.O.	K	Stainless steel	3/8	1		
			ĸ	01001	1/2	1		
5	20A	N.C.	L	C37	3/4	00		
С	20A	N.O.	М	Stainless steel	3/4	20		
6		N.C.	N	C37		0.5		
D	25A	N.O.	Р	Stainless steel	1	25		
7		N.C.						
E	32A	N.O.	Q	CAC408	32A Flange	35		
8		N.C.						
F	40A	N.O.	R	CAC408	40A Flange	40		
9		N.C.						
G	50A	N.O.	S	CAC408	50A Flange	50		

Symbol	Voltage	Electrical entry
A	24 VDC	Grommet
в	100 VAC	Grommet
С	110 VAC	(With surge voltage
D	200 VAC	\suppressor/
Е	230 VAC	
F	24 VDC	N N
G	24 VDC	DIN terminal
н	100 VAC	(With surge voltage
J	110 VAC	\suppressor/
к	200 VAC	
L	230 VAC	
М	24 VDC	Conduit terminal /With surge \
Ν	100 VAC	voltage
Ρ	110 VAC	\suppressor/
Q	200 VAC	
R	230 VAC	a c
S	24 VDC	Conduit
т	100 VAC	(With surge voltage
U	110 VAC	\suppressor/
v	200 VAC	
w	230 VAC	
Y	24 VDC	Flat terminal
z	Othe	r voltages and electrical option

For other special options, refer to page 133.

	24 VAC		
	48 VAC		
Special voltage	220 VAC		
	240 VAC		
	12 VDC		
DIN terminal with lig	ght		
Conduit terminal wi	th light		
Without DIN connect	ctor		
Oil-free			
G thread			
NPT thread			
With bracket			
Special electrical er	ntry direction		

Dimensions \rightarrow Page on and after 140 (Single Unit)

SMC

For Heated water

Possible to use this for air (up to 99°C) and water. Note that the maximum operating pressure differential and flow rate characteristics should be within the specifications of the fluid used.

Model/Valve Specifications

Symbol

Refer to "Glossary of Terms' on page 156 for symbol.

Normally Closed (N.C.)

Normany Closed (N.C.)										IVXF	
Body	Port size	Orifice diameter		Min. operating pressure		sure differential ^{Note 3)}	Flow rate ch	aracteristics	Max. system	Weight ^{Note 2)}	VAL
material	1 011 3120	(mmø)	Woder	differential Note 1, 3) (MPa)	AC	DC	Kv	Conversion Cv	pressure Note 3) (MPa)	(g)	W
	1/4 (8A)						1.6	1.9		480	VXF
	3/8 (10A)	10	VXD235		0.7	0.5	2.0	2.4		480	
Stainless	1/2 (15A)						2.0	2.4		480	VXH
steel, C37	3/8 (10A)	15	VXD245	0.02			3.9	4.5		720	
	1/2 (15A)	15	VAD245				4.6	5.5	1.5	720	VXF
	3/4 (20A)	20	VXD255				8.2	9.5	1.5	840	•//
	1 (25A)	25	VXD265		1.0	1.0	11.0	13		1360	VX3
	32A Flange	35	VXD275				19.6	23] [5400	VAG
CAC408	40A Flange	40	VXD285	0.03			26.4	31		6800	
	50A Flange	50	VXD295				42.8	49		8400	VXA

Note 1) Be aware that even if the pressure differential is above the minimum operating pressure differential when the valve is closed, the pressure differential may fall below the minimum operating pressure differential when the valve opens, depending on the power of the supply source (pumps, compressors, etc.) or the type of pipe restrictions.

Note 2) Weight of grommet type. Add 10 g for conduit type, 60 g for conduit terminal type respectively.

Note 3) Refer to "Glossary of Terms" on page 156 for details on the minimum operating pressure differential, maximum operating pressure.

Fluid and Ambient Temperature

Fluid temperature (°C)	Ambient temperature (°C)
1 to 99	-20 to 60

Note) No freezing

Valve Leakage Rate

Internal Leakage

Seal material	Leakage rate	
Searmatenar	VXD23 to 26 (8A to 25A)	VXD27 to 29 (32A to 50A)
EPDM	0.2 cm ³ /min or less	1 cm ³ /min or less

External Leakage

Seal material	Leakage rate (Water) Note)					
Sear materiar	VXD23 to 26 (8A to 25A) VXD27 to 29 (32A to 50					
EPDM	0.1 cm ³ /min or less 0.1 cm ³ /min or less					

Note) Leakage is the value at ambient temperature 20°C.

VX2 VXK

VXD

VXZ

Model/Valve Specifications

Refer to "Glossary of Terms" on page 156 for symbol

Normally Open (N.O.)

Body	Port size	Orifice diameter				Flow rate ch	aracteristics	Max. system	Weight ^{Note 2)}	
material	1 011 3120	(mmø)	Woder	differential Note 1, 3) (MPa)	AC	DC	Kv	Conversion Cv	pressure Note 3) (MPa)	(g)
	1/4 (8A)						1.6	1.9		500
	3/8 (10A)	10	VXD2A5		0.4	0.3	2.0	2.4		500
Stainless	1/2 (15A)						2.0	2.4		500
steel, C37	3/8 (10A)	15	VXD2B5	0.02		-	3.9	4.5	1.5	740
	1/2 (15A)	15	VADZDO				4.6	5.5		740
	3/4 (20A)	20	VXD2C5				8.2	9.5	1.5	860
	1 (25A)	25	VXD2D5		0.7	0.7	11.0	13		1390
	32A Flange	35	VXD2E5				19.6	23		5430
CAC408	40A Flange	40	VXD2F5	0.03			26.4	31		6840
	50A Flange	50	VXD2G5				42.8	49		8440

Note 1) Be aware that even if the pressure differential is above the minimum operating pressure differential when the valve is closed, the pressure differential may fall below the minimum operating pressure differential when the valve opens, depending on the power of the supply source (pumps, compressors, etc.,) or the type of pipe restrictions.

Note 2) Weight of grommet type. Add 10 g for conduit type, 60 g for conduit terminal type respectively. Note 3) Refer to "Glossary of Terms" on page 156 for details on the minimum operating pressure differential, maximum operating pressure differential, maximum system pressure.

Fluid and Ambient Temperature

Fluid temperature (°C)	Ambient temperature (°C)
1 to 99	-20 to 60

Note) No freezing

Valve Leakage Rate

Internal Leakage

Cool motorial		e (Water) Note)
Seal material	VXD2A to 2D (8A to 25A)	VXD2E to 2G (32A to 50A)
EPDM	0.2 cm ³ /min or less	1 cm ³ /min or less

External Leakage

External	External Ecakage						
Cool motorial	Leakage rate	e (Water) Note)					
Searmateria	VXD2A to 2D (8A to 25A) VXD2E to 2G (32A to						
EPDM	0.1 cm ³ /min or less 0.1 cm ³ /min or less						
Nista) Lasles	Niste) Laska en is the contrast emblement to me another 2000						

Note) Leakage is the value at ambient temperature 20°C.

Pilot Operated 2 Port Solenoid Valve VXD Series

For Heated water

Seal material

					V	XD2	3 <u>5</u> A	В	
			г			5 For Heat	Fluid • ed water		
• Size-	-Valve	type		Bod	v material	Port size/Ori	fice diameter	• Vo	
Symbol	Size	Valve type		Symbol	Body material	Port size	Orifice diameter	Sym	
				Α		1/4			
3	8A	N.C.		в	C37	3/8	1		
	10A			С		1/2	10	A	
	15A			D	Stainless	1/4	10		
A	A	N.O.		Е	steel	3/8			
			L	F		1/2		В	
4		N.C.		G	C37	3/8		С	
4	10A	N.C.		Н	037	1/2	15	D	
в	15A	NO	N.O.		J	Stainless	3/8	15	E
5		N.O.	L	К	steel	1/2		G	
5		N.C.		L	C37			-	
С	20A	N.O.		М	Stainless steel	3/4	20	н	
6		N.C.		N	C37		·	J	
D	25A	N.C.	-	P	Stainless steel	1	25	ĸ	
					Jan 11035 51001			L	
7	32A	N.C.		Q	CAC408	32A Flange	35	N	
E	-	N.O.				- g-		Р	
8	40A	N.C.		R	CAC408	40A Flange	40	Q	
F	40A	N.O.		п	CAC406	40A Plange	40		
9		N.C.						R	
G	50A	N.O.		s	CAC408	50A Flange	50	Т	
-		1						U	

		Thread type Rc*	VX2
		 For body size 32A or more, the ports will be the flange type. 	VXK
Volt	age/Electric	cal entry	VXD
Symbol	Voltage	Electrical entry	VXZ
Α	24 VDC	Grommet	VXS
		-OJP	VXB
В	100 VAC	Grommet	VXE
С	110 VAC	With surge voltage	
D	200 VAC	\suppressor/	VXP
Е	230 VAC		VXR
G	24 VDC	DIN terminal (With surge voltage)	
н	100 VAC	(suppressor Note)	VXH
J	110 VAC		VXF
к	200 VAC		VAI
L	230 VAC	80	VX3
Ν	100 VAC	Conduit terminal	
Р	110 VAC	(voltage)	VXA
Q	200 VAC	\suppressor/	
R	230 VAC	the second second	
Т	100 VAC	Conduit /With surge \	
U	110 VAC	voltage	
v	200 VAC	\suppressor/	
W	230 VAC	a a la	
z		Other voltages	

Note) For the class H type DIN terminal, use it in combination with the connector provided.

For other special options, refer to page 133.

	24 VAC			
Special voltage	48 VAC			
Special Voltage	220 VAC			
	240 VAC			
Conduit terminal with light				
Oil-free				
G thread				
NPT thread				
With bracket	With bracket			
Special electrical entry direction				

VXD Series

For High temperature oil

Possible to use this for air (up to 99°C) and water. Note that the maximum operating pressure differential and flow rate characteristics should be within the specifications of the fluid used

∧ When the fluid is oil. –

The kinematic viscosity must not exceed 50 mm²/s. The special construction of the armature adopted in the built-in full-wave rectifier type gives an improvement in OFF response by providing clearance on the absorbed surface when it is switched ON.

Model/Valve Specifications

Symbol

Refer to "Glossary of Terms' on page 156 for symbol

Normally Closed (N.C.)

Body	Port size	Orifice diameter	Model	Min. operating pressure Max. operating pressure differential Note 3)		Flow rate ch	aracteristics	Max. system	Weight ^{Note 2)}	
material	1 011 3126	(mmø)	Woder	differential Note 1, 3) (MPa)	AC	DC	Kv	Conversion Cv	pressure Note 3) (MPa)	(g)
	1/4 (8A)						1.6	1.9		480
	3/8 (10A)	10	VXD236		0.5	0.4	2.0	2.4		480
Stainless	1/2 (15A)						2.0	2.4	1.5	480
steel, C37	3/8 (10A)	15	WYDOAG	XD246 0.02		-	3.9	4.5		720
	1/2 (15A)	15	VAD240				4.6	5.5		720
	3/4 (20A)	20	VXD256				8.2	9.5		840
	1 (25A)	25	VXD266		0.7	0.7	11.0	13		1360
	32A Flange	35	VXD276				19.6	23		5400
CAC408	40A Flange	40	VXD286	0.03			26.4	31		6800
	50A Flange	50	VXD296				42.8	49		8400

Note 1) Be aware that even if the pressure differential is above the minimum operating pressure differential when the valve is closed, the pressure differential may fall below the minimum operating pressure differential when the valve opens, depending on the power of the supply source (pumps, compressors, etc.,) or the type of pipe restrictions.

Note 2) Weight of grommet type. Add 10 g for conduit type, 60 g for conduit terminal type respectively.

Note 3) Refer to "Glossary of Terms" on page 156 for details on the minimum operating pressure differential, maximum operating pressure differential, maximum system pressure.

Fluid and Ambient Temperature

Fluid temperature (°C)	Ambient temperature (°C)
-5 Note) to 100	-20 to 60

Note) Kinematic viscosity: 50 mm²/s or less

Valve Leakage Rate

Internal Leakage

Seal material	Leakage rate (Oil) Note)			
Seai materiai	VXD23 to 26 (8A to 25A)	VXD27 to 29 (32A to 50A)		
FKM	0.2 cm ³ /min or less	1 cm ³ /min or less		

External Leakage

Seal material	Leakage rate (Oil) Note)				
Seai materiai	VXD23 to 26 (8A to 25A)	VXD27 to 29 (32A to 50A)			
FKM	0.1 cm ³ /min or less	0.1 cm ³ /min or less			

Note) Leakage is the value at ambient temperature 20°C.

Pilot Operated 2 Port Solenoid Valve VXD Series

For High temperature oil

▲When the fluid is oil. -

The kinematic viscosity must not exceed 50 mm²/s. The special construction of the armature adopted in the built-in full-wave rectifier type gives an improvement in OFF response by providing clearance on the absorbed surface when it is switched ON.

Model/Valve Specifications

Symbol

Refer to "Glossary of Terms' on page 156 for symbol.

Normally Open (N.O.)

Normany Open (N.O.)								VXP						
Body	Port size	Orifice diameter	Model		Max. operating pressure differential Note 3)		Flow rate characteristics		Max. system	Weight ^{Note 2)}	VAF			
material	FUITSIZE	(mmø)	woder	differential Note 1, 3) (MPa)	AC	DC	Kv	Conversion Cv	pressure Note 3) (MPa)	(g)				
	1/4 (8A)						1.6	1.9		500	VXR			
	3/8 (10A)	10	VXD2A6	0.4	0.4	0.4 0.3	2.0	2.4	l I	500				
Stainless	1/2 (15A)					2.0	2.4		500	VXH				
steel, C37	3/8 (10A)) 15 VXD2B6	0.02			3.9	4.5		740					
	1/2 (15A)		15	15	15	VADZDO				4.6	5.5	1.5	740	VXF
	3/4 (20A)		VXD2C6				8.2	9.5	1.5	860	U.V.I			
	1 (25A)	25	VXD2D6		0.6	0.6	11.0	13		1390	VX3			
	32A Flange	35	VXD2E6		1		19.6	23		5430	VAJ			
CAC408	40A Flange	40	VXD2F6	0.03			26.4	31		6840				
	50A Flange	50	VXD2G6				42.8	49		8440	VXA			

Note 1) Be aware that even if the pressure differential is above the minimum operating pressure differential when the valve is closed, the pressure differential may fall below the minimum operating pressure differential when the valve opens, depending on the power of the supply source (pumps, compressors, etc.) or the type of pipe restrictions.

Note 2) Weight of grommet type. Add 10 g for conduit type, 60 g for conduit terminal type respectively.

Note 3) Refer to "Glossary of Terms" on page 156 for details on the minimum operating pressure differential, maximum operating pressure.

Fluid and Ambient Temperature

Fluid temperature (°C)	Ambient temperature (°C)
-5 Note) to 100	-20 to 60

Note) Kinematic viscosity: 50 mm²/s or less

Valve Leakage Rate

Internal Leakage

Cool motorial	Leakage rate (Oil) Note)			
Seal material	VXD2A to 2D (8A to 25A)	VXD2E to 2G (32A to 50A)		
FKM	0.2 cm ³ /min or less	1 cm ³ /min or less		

External Leakage

O and marked and	Leakage rate (Oil) Note)			
Seal material	VXD2A to 2D (8A to 25A)	VXD2E to 2G (32A to 50A)		
FKM	0.1 cm ³ /min or less	0.1 cm ³ /min or less		
Nete) Les les restientes et emplient terrent un 2000				

Note) Leakage is the value at ambient temperature 20°C.

Series VXD

For High temperature oil

How	to	Order
-----	----	-------

(E CA ROHS

				V	XD2	3 <u>6</u> A	B	
				6	For High tempe	Fluid rature oil		
•Size-	–Valve t	vpe	•Bod	v material/	Port size/Orif	ice diameter	۰Va	
Symbol	Size	Valve type	Symbol	Body material	Port size	Orifice diameter	Symt	
			Α		1/4			
3	8A	N.C.	В	C37	3/8	1		
	8A 10A		С	1	1/2	10	A	
	10A 15A		D	0	1/4	10		
A	A	ISA	N.O.	E	Stainless steel	3/8		
		L		F		1/2		В
4		NO	G	007	3/8		С	
4	10A N.C.	A H J Stair	C37	1/2	- 15	D		
в	15A		NO	3/8		E		
В				к	steel	1/2		G
5		N.C.	L	C37			-	
C	20A	N.O.	M	Stainless steel	3/4	20	н	
				0.07		1	J	
6 D	25A	N.C. N.O.	N P	C37 Stainless steel	1	25	ĸ	
D		N.O.	P	Stainless steel			L	
7	32A	N.C.	Q	CAC408	32A Flange	35	N	
E	-	N.O.					Р	
8	40A	N.C.	В	CAC408	40A Flange	40	Q	
F	-574	N.O.		0/10400		40	B	
9	504	N.C.	s	0.4.0.400	504 Elana	50	T	
G	50A	N.O.	3	CAC408	50A Flange	50	U	

Common Specifications

Seal material	FKM
Coil insulation type	Class H
Thread type	Rc*

* For body size 32A or more, the ports will be the flange

• Voltage/Electrical entry

Symbol	Voltage	Electrical entry	
A	24 VDC	Grommet	
в	100 VAC	Grommet	
С	110 VAC	With surge voltage	
D	200 VAC	\suppressor/	
Е	230 VAC	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
G	24 VDC	DIN terminal	
н	100 VAC	(With surge voltage suppressor Note)	
J	110 VAC	(upprouse)	
к	200 VAC		
L	230 VAC		
Ν	100 VAC	Conduit terminal	
Р	110 VAC	With surge voltage	
Q	200 VAC	suppressor	
R	230 VAC		
Т	100 VAC	Conduit	
U	110 VAC	With surge voltage	
v	200 VAC	\suppressor/	
w	230 VAC		
Z	Other voltages		

Note) For the class H type DIN terminal, use it in combination with the connector provided.

For other special options, refer to page 133.

	24 VAC			
Special voltage	48 VAC			
Special Voltage	220 VAC			
	240 VAC			
Conduit terminal with light				
Oil-free				
G thread				
NPT thread				
With bracket				
Special electrical entry direction				

Dimensions \rightarrow Page on and after 148 (Single Unit)

VXD Series **Other Special Options**

Specia	Electrical Options Special voltage, With light, Without DIN connector)								
	VXD2 3 0 A Z 1A								
	Enter standard •								
	product number.								
• Electrical option									
Electrical specification/Voltage/Electrical entry Specification Symbol Class H* Voltage Electrical entry									
Specification	1A		48 VAC	Electrical entry					
	1B	٠	220 VAC	Grommet					
	1C 1U		240 VAC 24 VAC	(With surge voltage suppressor)					
	1D	-	12 VDC	Grommet					
	1E	_	12 VDC	Grommet (With surge voltage suppressor)					
	1F	•	48 VAC						
ge	1G 1H		220 VAC 240 VAC	DIN terminal					
Special voltage	11		240 VAC 24 VAC	(With surge voltage suppressor)					
2	1J	-	12 VDC						
eci	1K	٠	48 VAC						
Sp	1L 1M		220 VAC 240 VAC	Conduit terminal					
	1W		240 VAC 24 VAC	(With surge voltage suppressor)					
	1N	_	12 VDC						
	1P	•	48 VAC						
	1Q 1R		220 VAC 240 VAC	Conduit					
	1Y	Ĭ	240 VAC 24 VAC	(With surge voltage suppressor)					
	15	_	12 VDC						
	1T	—	12 VDC	Flat terminal					
	2A		24 VDC						
	2B		100 VAC						
	2C 2D		110 VAC 200 VAC						
	2E	ŏ	230 VAC	DIN terminal					
	2F	•	48 VAC	(With surge voltage suppressor)					
	2G		220 VAC						
Ŧ	2H 2V	ě	240 VAC 24 VAC						
ligt	2J	_	12 VDC						
Nith light	2K	_	24 VDC						
>	2L 2M		100 VAC 110 VAC						
	21VI 2N	•	200 VAC						
	2P	۲	230 VAC	Conduit terminal					
	2Q		48 VAC	(With surge voltage suppressor)					
	2R 2S		220 VAC 240 VAC						
	2W	Ŏ	24 VAC						
	2T	—	12 VDC						
	3A	_	24 VDC						
ctor	3B	—	100 VAC						
aur	3C 3D	-	110 VAC						
CO	3D 3E	=	200 VAC 230 VAC	DIN terminal					
DIN	3F	—	48 VAC	(With surge voltage suppressor)					
out	3G	-	220 VAC						
Without DIN connector	3H 3V		240 VAC 24 VAC						
5	3V 3J	=	12 VDC						

Electrical Ontions

* Options marked with • are available for Class "H" coil. Applicable for all when the coil insulation class is Class "B".

(Lov	Other O v concentration ozone to deionized water, O	ptio resis Dil-fre	ns stant and applicable e, Port thread)	
	VXD23	0	ΔΖ	VX2
				VXK
	Enter standa product numb			VXD
	er option (Low concen applicable to deionized			VXZ
Symbol	Low concentration ozone resistant and applicable to deionized water *1, *4 (Seal material: FKM)	Oil-free	Port thread*3	VXS
Nil	—	—	Rc, With One-touch fitting*2	
Α			G*5	VXB
В	_	_	NPT	
С	0	—	Rc, With One-touch fitting*2	VXE
D		0	G*5	
E	—	0	NPT	VXP
F	0		G*5	•/
G	0	_	NPT	VXR
н			Rc, With One-touch fitting*2	VAII
K	0	0	G*5	VXH
L			NPT	VAN
Z	_	0	Rc, With One-touch fitting*2	VXF
	cable to air (VXD200) and wa			V AI
*3 Only	touch fittings are attached to t flange type is available for 32 is and NPT cannot be selected	A to 50		VX3

Rc, G, and NPT cannot be selected. *4 When using deionized water or any other fluid that may corrode C37 (brass), select a stainless steel body.

*5 For connection, prepare a fitting compliant with ISO 16030 and JIS B 8674.

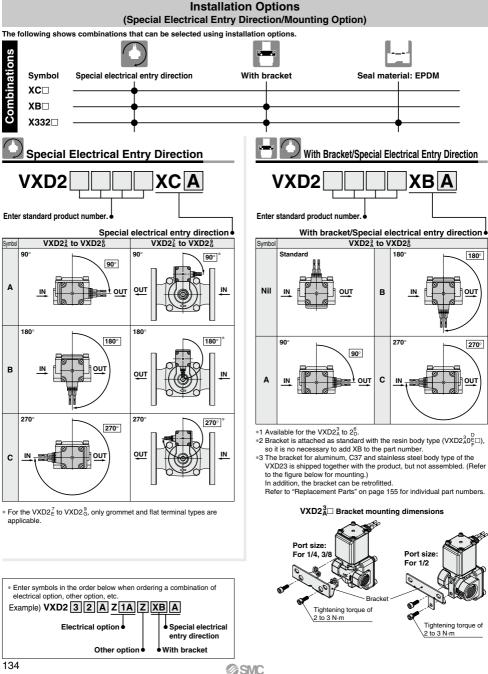
Made to Order

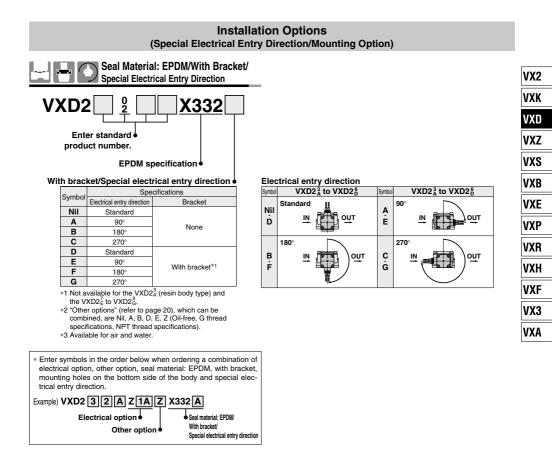
<Special lead wire length>

SMC

Produced upon receipt of order.

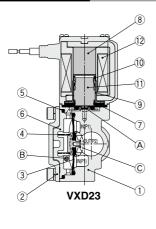
↓ Le	ad	wire leng	gth
XL	1	600 mm	
XL	2	1000 mm	
XL	3	1500 mm	
XL	4	3000 mm	

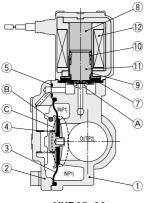

VXA

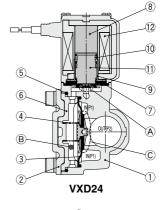

* Enter symbols in the order below when ordering a combination of electrical option, other option, etc.

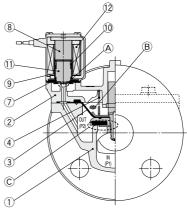
Example) VXD2 3 2 A Z 1A Z Electrical option Other option

133 D


VXD Series




VXD Series Construction


Normally Closed (N.C.)

VXD25, 26

VXD27, 28, 29

Component Parts

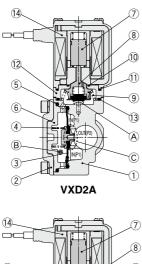
No.	Description	Model	Material
		VXD23	C37, Stainless steel, Aluminum, Resin (PBT)
1	Body	VXD24 to 26	C37, Stainless steel
		VXD27 to 29	CAC408
		VXD23, 24	Stainless steel
2	Bonnet	VXD25, 26	C37, Stainless steel
		VXD27 to 29	CAC408
3	Diaphragm assembly	VXD23 to 29	Stainless steel, NBR, FKM, EPDM
4	Spring	VXD23 to 29	Stainless steel
5	O-ring	VXD23 to 26	NBR, FKM, EPDM
6	Buffer	VXD23, 24	PPS
7	Stopper		NBR, FKM, EPDM
8	Core		Fe
9	Tube	VXD23 to 29	Stainless steel
10	Spring	VAD23 10 29	Stainless steel
11	Armature assembly		Stainless steel, NBR, FKM, EPDM, Resin (PPS)
12	Solenoid coil		Cu + Fe + Resin

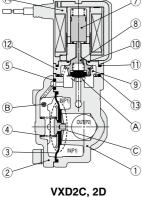
Operation

<Valve open> When coil 0 is energized, armature assembly 1 is attracted

by core (8) and pilot valve (A) is open.

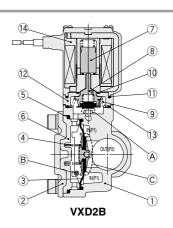
When A is open, the pressure in pressure chamber B is reduced and main valve C is open.

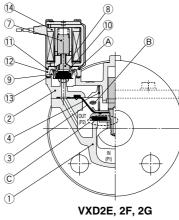

<Valve closed>

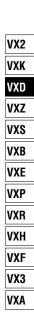

SMC

When coil 12 is de-energized, pilot valve A is closed, pressure in pressure chamber B increases, and main valve C is closed.

Construction VXD Series


Normally Open (N.O.)





Component Parts

	•		
No.	Description	Model	Material
		VXD2A	C37, Stainless steel, Aluminum, Resin (PBT)
1	Body	VXD2B to 2D	C37, Stainless steel
		VXD2E to 2G	CAC408
		VXD2A, 2B	Stainless steel
2	Bonnet	VXD2C, 2D	C37, Stainless steel
		VXD2E to 2G	CAC408
3	Diaphragm assembly	VXD2A to 2G	Stainless steel, NBR, FKM, EPDM
4	Spring	VXD2A to 2G	Stainless steel
5	O-ring	VXD2A to 2D	NBR, FKM, EPDM
6	Buffer	VXD2A, 2B	PPS
7	Sleeve assembly		Stainless steel, Resin (PPS)
8	Push rod assembly		Resin (PPS), Stainless steel, NBR, FKM, EPDM
9	Stopper		Stainless steel
10	O-ring A	VXD2A to 2G	NBR, FKM, EPDM
11	O-ring B	VADZA IO ZG	NBR, FKM, EPDM
12	Adapter		Resin (PPS)
13	O-ring C		NBR, FKM, EPDM
14	Solenoid coil		Cu + Fe + Resin

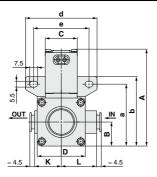
Operation

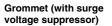
<Valve closed>

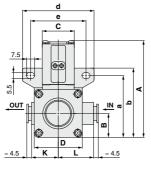
When coil () is energized, (already open) pilot valve () is closed, pressure in pressure chamber () increases, and main valve () is closed.

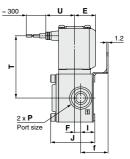
<Valve open>

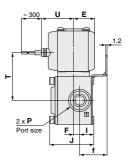
SMC

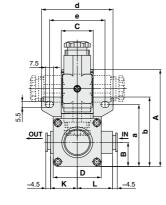

When coll (4) is de-energized, (already closed) pilot valve (Å) is open, pressure in pressure chamber (B) decreases, and main valve ($\mathbb C$) is open.

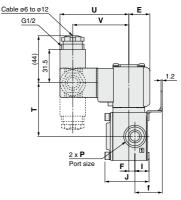



For information on handling One-touch fittings and on appropriate tubing, refer to page 167 and the Fittings & Tubing section of the "Handling Precautions for SMC Products" on the SMC website.


Dimensions/VXD2³_A Body Material: Resin (Ø10, Ø3/8", Ø12)


Grommet





DIN terminal

																-		(mm)				
													Electrical entry									
Model	One-touch fitting P	A	в	с	D	E	F	Т	J	к	L	Grommet		Grommet (voltage su	· ·	DI	N termi	nal				
												т	U	т	U	Т	U	v				
VXD2 ³	ø10, ø3/8", ø12	91 (97)	22.5	30	45	20	6	13.5	41.5	25	33	58.5 (64.5)	27	45 (50.5)	30	50.5 (56)	64.5	52.5				

One-touch fitting Mounting bracket dimensions Model b d Р а е f VXD2³ ø10, ø3/8", ø12 58 65 67 52 25.5

(): Denotes the Normally Open (N.O.) dimensions.

A 138

VX2 VXK

VXD

VXZ

VXS

VXB

VXE

VXP

VXR

VXH

VXF

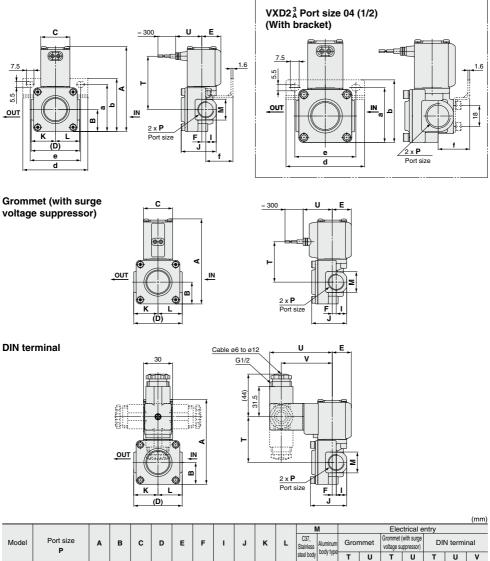
VX3

VXA

Conduit terminal d е (U±2) 34 С (V±2) 32 1.2 7.5 ł 25 臣 ¢ 5.5 н 6 G1/2 æ OUT م IN as ۵ í đ 2 x **P** Port size F D I ĸ = 4.5 L = 4.5 . Conduit d е С = 280 υ F 1.2 7.5 -¢ <u>G1/2</u> 5.5 ⊲ OUT 0 IN ۵ ⊚ ¢ 2 x **P** D F, I. Port size κ <u>= 4.</u>5 L = 4.5 . d Flat terminal е с U 1.2 7.5 ¢ н 5.5 ∢ OUT IN æ ۵ ര ¢ 2 x **P** Port size F D ı κ = 4.5 L = 4.5 ï (mm)

Dimensions/VXD2³_A Body Material: Resin (Ø10, Ø3/8", Ø12)

														Ele	ctrical e	ntry		
Model	One-touch fitting P	A	в	с	D	E	F	Т	J	к	L	Con	Conduit terminal		Cor	nduit	FI term	
												т	U	v	т	U	Т	U
VXD2 ³	ø10, ø3/8", ø12	91 (97)	22.5	30	45	20	6	13.5	41.5	25	33	52.5 (58)	99.5	68.5	52.5 (58)	47.5	58.5 (64.5)	23


SMC

One-touch fitting Mounting bracket dimensions Model b d P а е f 52 25.5 VXD2³ ø10, ø3/8", ø12 58 65 67

Dimensions/VXD2³_A Body Material: Aluminum, C37, Stainless Steel

Grommet

	Model Port size																				
	Model	Port size	A	в	с	D	Е	F	I	J	к	L	C37, Stainless	Aluminum		nmet	Grommet voltage si	(with surge uppressor)	DI	V termi	nal
		•											steel body	bouy type	т	U	т	U	т	U	v
	VXD2 ³	1/4, 3/8	88	22.5	30	50	20	4.5	11	37.5	25	25	22	24	55.5	27	42	30	47.5	64.5	52.5
	VADZA	1/2	(93.5)	22.5	30	50	20	5	13	42.5	25	25	27	30	(61)	21	(47.5)	30	(53)	04.5	52.5
- î		Port size		Mountir	a brac	kot din	noncio	ne	-												

Model	Port size	M	ounting t	oracket o	limensio	ns
Woder	Р	а	b	d	е	f
VXD2 ³	1/4, 3/8	48.5	55	67	52	28
VADZA	1/2	47	53.5	67	52	27

(): Denotes the Normally Open (N.O.) dimensions. Aluminum body is for air. Refer to page 118 for details.

VX2

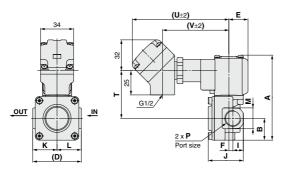
VXK VXD

VXZ

VXS

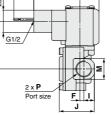
VXB

VXE VXP VXR


VXH

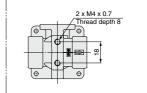
VXF VX3

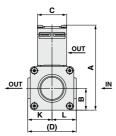

VXA

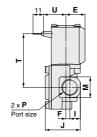

Dimensions/VXD2 ³_ABody Material: Aluminum, C37, Stainless Steel

Conduit terminal

Conduit



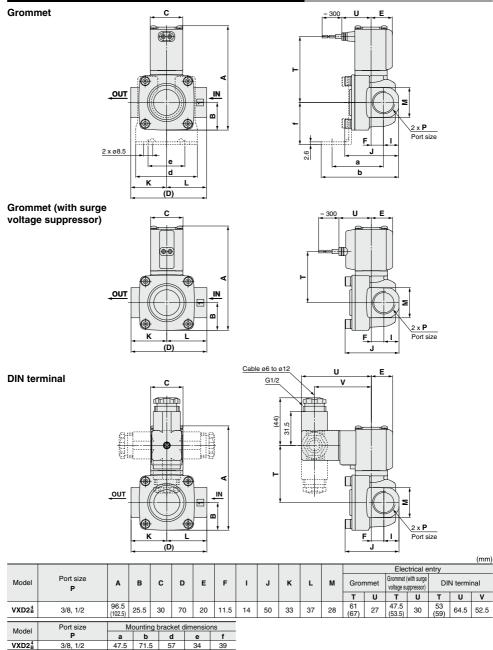

Е



Note) Only the VXD2 A with port size of 04 (1/2) has threads on the bottom of the body.

Flat terminal

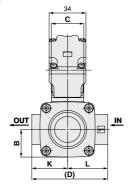
																				(11111)		
												P	Λ			Elec	ctrical e	ntry				
Model	Port size P	A	в	с	D	Е	F	Т	J	к			inless Aluminum		Stainless		duit terr	ninal	Con	duit	Fl: term	
	•											steel body	body	Т	U	v	Т	U	Т	U		
VXD2 ³	1/4, 3/8	88	22.5	30	50	20	4.5	11	37.5	25	25	22	24	49.5	99.5	68.5	49.5	47.5	55.5	23		
VADZA	1/2	(93.5)	22.5	30	50	20	5	13	42.5	25	25	27	30	(55)	99.5	08.5	(55)	47.5	(61)	23		

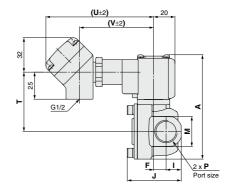

(): Denotes the Normally Open (N.O.) dimensions. Aluminum body is for air. Refer to page 118 for details.

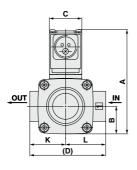
(mm)

Dimensions/VXD2⁴_B Body Material: C37, Stainless Steel

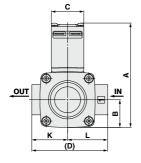
(): Denotes the Normally Open (N.O.) dimensions.

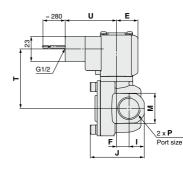

142



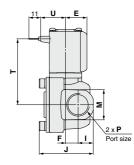

Dimensions/VXD2⁴_B Body Material: C37, Stainless Steel

Conduit terminal



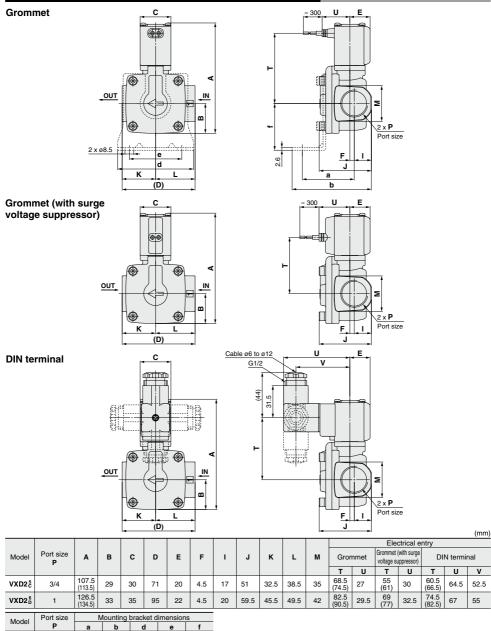


Conduit



Flat terminal

	VX2
	VXK
	VXD
	VXZ
	VXS
	VXB
l	VXE
	VXP
	VXR
	VXH
	VXF
	VX3
	VXA


(mm) Electrical entry Flat Port size Model в с D Е F ı J к L М Conduit terminal Conduit Α Ρ terminal v υ υ т U т т 96.5 55 (61) 55 (61) 61 (67) 25.5 20 11.5 99.5 68.5 47.5 VXD2⁴_B 3/8, 1/2 30 70 14 50 33 37 28 23

(): Denotes the Normally Open (N.O.) dimensions.

⊘SMC

Dimensions/VXD2⁵/2⁶_D Body Material: C37, Stainless Steel

50.5 VXD2⁶ 55.5 85.5 81 (): Denotes the Normally Open (N.O.) dimensions.

77.5

74

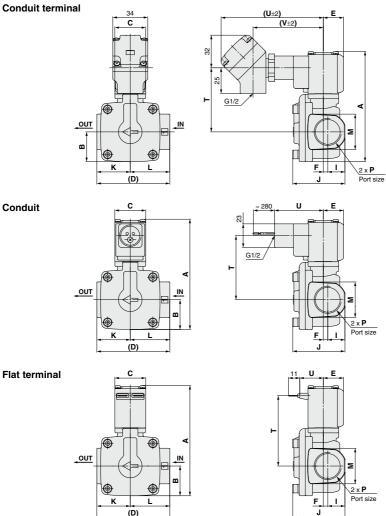
51

58

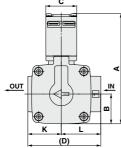
45.5

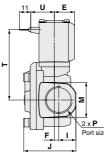
49.5

3/4


1

144

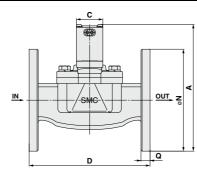

VXD2

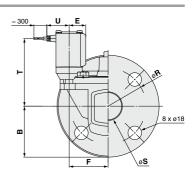


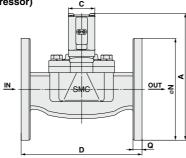
Dimensions/VXD2⁵_C/2⁶_D Body Material: C37, Stainless Steel

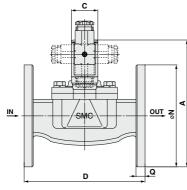
	VX2
[VXK
	VXD
	VXZ
	VXS
	VXB
	VXE
	VXP
	VXR
	VXH
[VXF
	VX3
	VXA

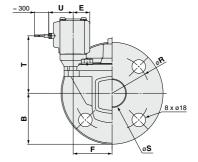
(mm)

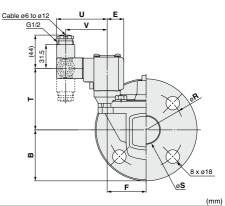

													Electrical entry						
Model	Port size P	A	в	с	D	Е	F	Т	J	к	L	м	Con	duit terr	ninal	Cor	duit	FI term	
													Т	U	v	Т	U	Т	U
VXD2 ⁵	3/4	107.5 (113.5)	29	30	71	20	4.5	17	51	32.5	38.5	35	62.5 (68.5)	99.5	68.5	62.5 (68.5)	47.5	68.5 (74.5)	23
VXD2 ⁶ _D	1	126.5 (134.5)	33	35	95	22	4.5	20	59.5	45.5	49.5	42	76.5 (84.5)	102	71	76.5 (84.5)	50	82.5 (90.5)	25.5


Model	Port size	N	lounting	bracket d	limensior	IS	
wouer	Р	а	b	d	е	f	
VXD2 ⁵ _C	3/4	50.5	77.5	74	51	45.5	
VXD2 ⁶ _D	1	55.5	85.5	81	58	49.5	


Dimensions/VXD2⁷/2⁸/2⁹ Body Material: CAC408



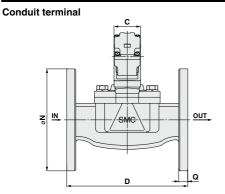

Grommet (with surge voltage suppressor)

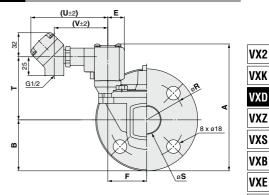

Grommet

DIN terminal

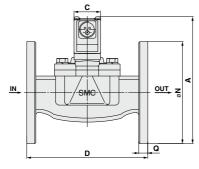
	Applicable flange			с								Electrical entry							
Model		A	в		D	E	F	N	Q	R	s	Gron	nmet	Grommet voltage si	(with surge uppressor)	DIN terminal			
	-											Т	U	Т	U	Т	U	v	
VXD2 ⁷	32A	168 (176)	67.5	35	160	22	51.5	135	12	100	36	90 (98)	29.5	76 (84)	32.5	82 (90)	67	55	
$VXD2_{F}^{8}$	40A	179.5 (187.5)	70	40	170	24.5	54.5	140	14	105	42	98.5 (106.5)	32	85 (93)	35	90.5 (98.5)	69.5	57.5	
VXD2 ⁹ _G	50A	192.5 (200.5)	77.5	40	180	24.5	59	155	14	120	52	104 (112)	32	90.5 (98.5)	35	96 (104)	69.5	57.5	

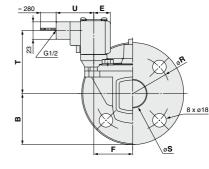
VXP

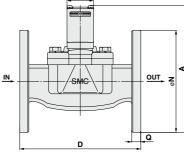

VXR VXH

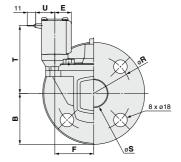

VXF

VX3

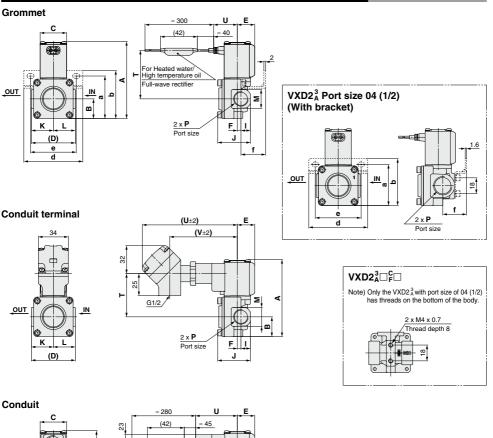

VXA


Dimensions/VXD2⁷/2⁸/2⁹ Body Material: CAC408




Conduit

Flat terminal



(mm)

											Electrical entry							
Model	Applicable flange	A	в	с	D	E	F	N	Q	R	s	Con	Conduit terminal			Conduit		at ninal
												Т	U	v	Т	U	Т	U
VXD2 ⁷ _E	32A	168 (176)	67.5	35	160	22	51.5	135	12	100	36	84 (92)	102	71	84 (92)	50	90 (98)	25.5
VXD2 ⁸ _F	40A	179.5 (187.5)	70	40	170	24.5	54.5	140	14	105	42	92.5 (100.5)	104.5	73.5	92.5 (100.5)	52.5	98.5 (106.5)	28
VXD2g	50A	192.5 (200.5)	77.5	40	180	24.5	59	155	14	120	52	98 (106)	104.5	73.5	98 (106)	52.5	104 (112)	28

Dimensions/VXD2³_A Body Material: C37, Stainless Steel (1/4, 3/8, 1/2)

_																				(mm)	
		Port size													Ele	Electrical entry					
1	Model		A	в	С	D	E	F	1	J	к	L	м	Grommet Conduit terminal				Conduit			
		Р												Т	U	т	U	v	Т	U	
	XD2 ³	1/4, 3/8	88	22.5		00	50	20	4.5	11	37.5	25	05	22	55.5	07	49.5	400		49.5	47.5
,	AD2A	1/2	(93.5)	22.5	30	50	20	5	13	42.5	25	25	27	(61) 27	21	(55) 108	108	77	(55)	47.5	

F,

J

≥

G1/2 For Heated water/ High temperature oil

Full-wave rectifier

2 x P Port size

Model	Port size	N	lounting	bracket d	limensior	IS
Model	Р	P a		d	е	f
VXD2 ³	1/4, 3/8	48.5	55	67	52	28
VADZA	1/2	47	53.5	67	52	27

(): Denotes the Normally Open (N.O.) dimensions.

IN

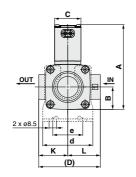
۵

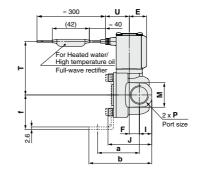
Ô

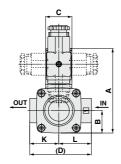
OUT

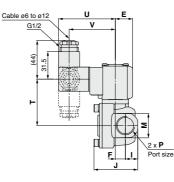
ø

K L


(D)




Dimensions/VXD2⁴_B Body Material: C37, Stainless Steel

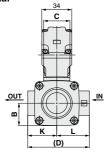


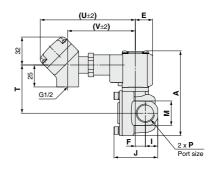
DIN terminal

VX2
VXK
VXD
VXZ
VXS
VXB
VXE
VXP
VXR
VXH
VXF
VX3
VXA

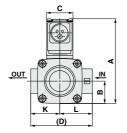
																	(mm)
														Ele	ctrical e	ntry	
Model	Port size	A	в	с	D	E	F	I	J	κ	L	м	Gron	nmet	D	IN termin	al
	P												т	U	т	U	v
VXD2 ⁴ _B	3/8, 1/2	96.5 (102.5)	25.5	30	70	20	11.5	14	50	33	37	28	61 (67)	27	53 (59)	64.5	52.5
Model	Port size	M	ounting I	oracket o	limensio	ns											

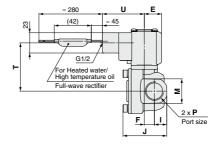
 Middel
 P
 a
 b
 d
 e
 f


 VXD2⁶/_B
 3/8, 1/2
 47.5
 71.5
 57
 34
 39

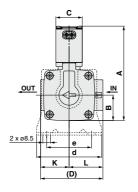

VXD Series

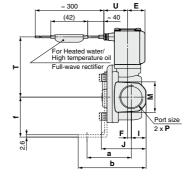
For Heated water/High temperature oil

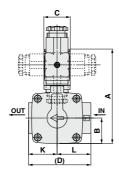

Dimensions/VXD2⁴_B Body Material: C37, Stainless Steel

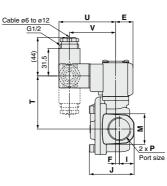

Conduit terminal

Conduit




																	(mm)
														Ele	ctrical e	ntry	
Model	Port size	A	в	с	D	E	F	1	J	к	L	м	Cor	nduit term	ninal	Cor	nduit
	Р												т	U	V	т	U
$VXD2^4_B$	3/8, 1/2	96.5 (102.5)	25.5	30	70	20	11.5	14	50	33	37	28	55 (61)	108	77	55 (61)	47.5


Dimensions/VXD2⁵/2⁶_D Body Material: C37, Stainless Steel

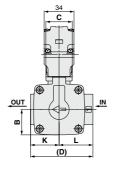

Grommet

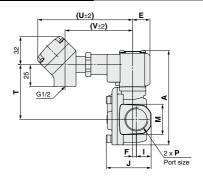
DIN terminal

VX2
VXK
VXD
VXZ
VXS
VXB
VXE
VXP
VXR
VXH
VXF
VX3
VXA

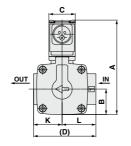
|--|

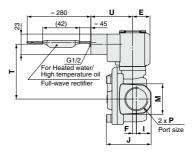
														Ele	ctrical er	ntry	
Model	Port size	A	в	С	D	E	F	1	J	ĸ	L	м	Gror	nmet	DI	N termir	al
	Р												Т	U	т	U	v
VXD2 ⁵	3/4	107.5 (113.5)	29	30	71	20	4.5	17	51	32.5	38.5	35	68.5 (74.5)	27	60.5 (66.5)	64.5	52.5
	1	126.5 (134.5)	33	35	95	22	4.5	20	59.5	45.5	49.5	42	82.5 (90.5)	29.5	74.5 (82.5)	67	55

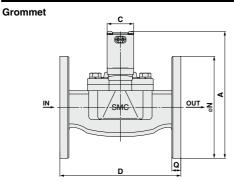

Model	Port size	N	Mounting bracket dimensions											
wouer	Р	а	d	е	f									
VXD2 ⁵	3/4	50.5	77.5	74	51	45.5								
VXD2 ⁶ _D	1	55.5	85.5	81	58	49.5								

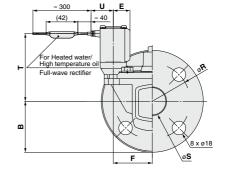

VXD Series

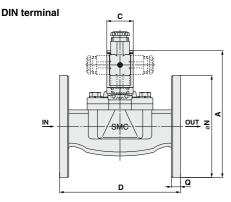
For Heated water/High temperature oil

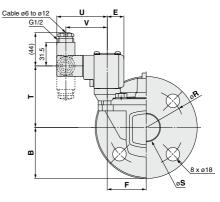

Dimensions/VXD2⁵/2⁶_D Body Material: C37, Stainless Steel


Conduit terminal



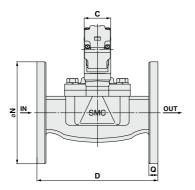



														Flo	ctrical e	ntn/	(mm)
Model	Port size	A	в	с	D	Е	F	1	J	к	L	м	Cor	nduit term			nduit
	Р												т	U	v	Т	U
VXD2 ⁵	3/4	107.5 (113.5)	29	30	71	20	4.5	17	51	32.5	38.5	35	62.5 (68.5)	108	77	62.5 (68.5)	47.5
VXD2 ⁶ _D	1	126.5 (134.5)	33	35	95	22	4.5	20	59.5	45.5	49.5	42	76.5 (84.5)	110.5	79.5	76.5 (84.5)	50

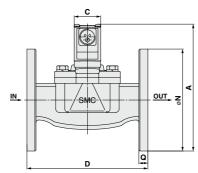


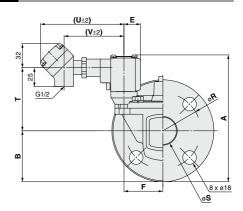
Dimensions/VXD2⁷/2⁸/2⁹ Body Material: CAC408

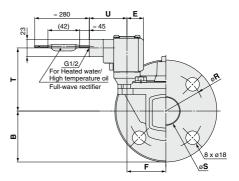
VX2
VXK
VXD
VXZ
VXS
VXB
VXE
VXP
VXR
VXH
VXF
VX3
VXA


																(mm)
													Ele	ectrical er	ntry	
Model	Applicable flange	A	в	с	D	E	F	N	Q	R	s	Gron	nmet	D	IN termin	al
	nange											т	U	Т	U	V
VXD2 ⁷ E	32A	168 (176)	67.5	35	160	22	51.5	135	12	100	36	90 (98)	29.5	82 (90)	67	55
VXD2 ⁸ _F	40A	179.5 (187.5)	70	40	170	24.5	54.5	140	14	105	42	98.5 (106.5)	32	90.5 (98.5)	69.5	57.5
VXD2 ⁹ _G	50A	192.5 (200.5)	77.5	40	180	24.5	59	155	14	120	52	104 (112)	32	96 (104)	69.5	57.5

VXD Series


For Heated water/High temperature oil


Dimensions/VXD2⁷/2⁸/2⁹ Body Material: CAC408


Conduit terminal

																(mm)
	Ameliashis												Ele	ectrical er	ntry	
Model	Applicable flange	A	в	С	D	E	F	N	Q	R	s	Cor	nduit term	inal	Con	duit
	nange											т	U	v	Т	U
VXD2 ⁷	32A	168 (176)	67.5	35	160	22	51.5	135	12	100	36	84 (92)	110.5	79.5	84 (92)	50
VXD2 ⁸ _F	40A	179.5 (187.5)	70	40	170	24.5	54.5	140	14	105	42	92.5 (100.5)	113	82	92.5 (100.5)	52.5
VXD2g	50A	192.5 (200.5)	77.5	40	180	24.5	59	155	14	120	52	98 (106)	113	82	98 (106)	52.5

Replacement Parts

• DIN Connector Part No.

\langle	\geq
\subseteq	
A	

<coil b="" class="" insulation="" type=""></coil>				
Electrical option	Rated voltage	Connector part no.		
	24 VDC			
	12 VDC			
	100 VAC			
	110 VAC			
None	200 VAC	3G-GDM2A-G		
None	220 VAC	3G-GDWZA-G		
	230 VAC			
	240 VAC			
	24 VAC			
	48 VAC			
	24 VDC	GDM2A-L5		
	12 VDC	GDM2A-L6		
	100 VAC	GDM2A-L1		
	110 VAC	GDM2A-L1		
Mith Links	200 VAC	GDM2A-L2		
With light	220 VAC	GDM2A-L2		
	230 VAC	GDM2A-L2		
	240 VAC	GDM2A-L2		
	24 VAC	GDM2A-L5		
	48 VAC	GDM2A-L15		

Electrical option	Rated voltage	Connector part no.	
	24 VDC	GDM2A-G-S5	
	100 VAC		
	110 VAC		
	200 VAC		
None	220 VAC	GDM2A-R	
	230 VAC	GDIVIZA-N	
	240 VAC		
With light	24 VAC		
	48 VAC		
	24 VDC	GDM2A-G-Z5	
	100 VAC	GDM2A-R-L1	
	110 VAC	GDM2A-R-L1	
	200 VAC	GDM2A-R-L2	
	220 VAC	GDM2A-R-L2	
	230 VAC	GDM2A-R-L2	
	240 VAC	GDM2A-R-L2	
	24 VAC	GDM2A-R-L5	
	48 VAC	GDM2A-R-L5	

<Coil Insulation Type/Class H>

- Gasket Part No. for DIN Connector
 VCW20-1-29-1 (for Class B)
 VCW20-1-29-1-F (for Class H)
- Lead Wire Assembly Part No. for Flat Terminal (Set of 2 pcs.) VX021S-1-16FB
- Bracket Assembly Part No. for the VXD2 ³/_A Metal Body (C37, Stainless steel, Aluminum)

Port size: For 1/4, 3/8 VXD30S-14A-1

Port size: For 1/2

VXD30S-14A-3

* 2 mounting screws (M4 hexagon socket head cap screws) are shipped together with the bracket assembly, but not assembled.

VX2
VXK
VXD
VXZ
VXS
VXB
VXE
VXP
VXR
VXH
VXF
VX3
VXA

VXD Series Glossary of Terms

Pressure Terminology

1. Maximum operating pressure differential

The maximum pressure differential (the difference between the inlet and outlet pressure) which is allowed for operation. When the outlet pressure is 0 MPa, this becomes the maximum operating pressure.

2. Minimum operating pressure differential

The minimum pressure differential (the difference between the inlet pressure and outlet pressure) required to keep the main valve fully open.

3. Maximum system pressure

The maximum pressure that can be applied inside the pipelines (line pressure).

[The pressure differential in the solenoid valve portion must be below the maximum operating pressure differential.]

4. Withstand pressure

The pressure in which the valve must be withstood without a drop in performance after holding for one minute under prescribed (static) pressure and returning to the operating pressure range. [value under the prescribed conditions]

Electrical Terminology

1. Apparent power (VA)

Volt-ampere is the product of voltage (V) and current (A). Power consumption (W): For AC, W = V-A-cos θ . For DC, W = V-A. Note) cos θ shows power factor. cos θ = 0.9

2. Surge voltage

A high voltage which is momentarily generated by shutting off the power in the shut-off area.

3. Enclosure

A degree of protection defined in the "JIS C 0920: Waterproof test of electric machinery/appliance and the degree of protection against the intrusion of solid foreign objects."

Verify the degree of protection for each product.

Second characteristic numeral First characteristic numeral

First Characteristics:

Degrees of protection against solid foreign objects

U	Non-protected
1	Protected against solid foreign objects of 50 mmø and greater
2	Protected against solid foreign objects of 12 mmø and greater
3	Protected against solid foreign objects of 2.5 mmø and greater
4	Protected against solid foreign objects of 1.0 mmø and greater
5	Dust-protected
6	Dust-tight

Electrical Terminology

Second Characteristics: Degrees of protection against water

0	Non-protected	_
1	Protected against vertically falling water drops	Dripproof type 1
2	Protected against vertically falling water drops when enclosure tilted up to 15°	Dripproof type 2
3	Protected against rainfall when enclosure tilted up to 60°	Rainproof type
4	Protected against splashing water	Splashproof type
5	Protected against water jets	Water-jet-proof type
6	Protected against powerful water jets	Powerful water-jet-proof type
7	Protected against the effects of temporary immersion in water	Immersible type
8	Protected against the effects of continuous immersion in water	Submersible type

Example) IP65: Dust-tight, Water-jet-proof type

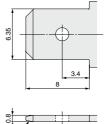
"Water-jet-proof type" means that no water intrudes inside an equipment that could hinder from operating normally by means of applying water for 3 minutes in the prescribed manner. Take appropriate protection measures, since a device is not usable in an environment where a droplet of water is splashed constantly.

Others

1. Material

NBR: Nitrile rubber FKM: Fluororubber EPDM: Ethylene-propylene rubber

2. Oil-free treatment


The degreasing and washing of wetted parts

3. Symbol

In the symbol ((\underline{III}_{JW})) Port 1 (IN) and Port 2 (OUT) are shown in a blocked condition (\pm), but it is not possible to use the valve in cases of reverse pressure, where the Port 2 pressure is higher than the Port 1 pressure.

Flat Terminal

1. Flat terminal/Electrical connection size of molded coil

SMC

Chamfe

VXD Series **Solenoid Valve Flow Rate Characteristics** (How to indicate flow rate characteristics)

1. Indication of flow rate characteristics

The flow rate characteristics in equipment such as a solenoid valve, etc. are indicated in their specifications as shown in Table (1).

Table (1) Indication of Flow Rate Characteristics

Corresponding equipment	Indication by international standard	Other indications	Conformed standard
	<i>C</i> , <i>b</i>	_	ISO 6358: 1989 JIS B 8390: 2000
Pneumatic equipment	_	S	JIS B 8390: 2000 Equipment: JIS B 8379, 8381-1, 8381-2
		Cv	ANSI/(NFPA)T3.21.3 R1-2008
Process fluid control	Kv	_	IEC60534-1: 2005 IEC60534-2-3: 1997
equipment	_	Cv	JIS B 2005-1: 2012 JIS B 2005-2-3: 2004
			Equipment: JIS B 8471, 8472, 8473

2. Pneumatic equipment

- 2.1 Indication according to the international standards
- (1) Conformed standard

ISO 6358: 1989 : Pneumatic fluid power—Components using compressible fluids— Determination of flow rate characteristics JIS B 8390: 2000 : Pneumatic fluid power—Components using compressible fluids—

How to test flow rate characteristics

- (2) Definition of flow rate characteristics
 - The flow rate characteristics are indicated as a result of a comparison between sonic conductance C and critical pressure ratio b.
 - Sonic conductance C: Value which divides the passing mass flow rate of an equipment in a choked flow condition by the product of the upstream absolute pressure and the density in a standard condition.
 - Critical pressure ratio **b**: Pressure ratio (downstream pressure/upstream pressure) which will turn to a choked flow when the value is smaller than this ratio. Choked flow : The flow in which the upstream pressure is higher than the downstream pressure and where sonic speed in a certain part of an equipment is reached.

Gaseous mass flow rate is in proportion to the upstream pressure and not dependent on the downstream pressure.

Subsonic flow : Flow greater than the critical pressure ratio Standard condition : Air in a temperature state of 20°C, absolute pressure 0.1 MPa (= 100 kPa = 1 bar), relative humidity 65%. It is stipulated by adding the "(ANR)" after the unit depicting air volume. (standard reference atmosphere)

ÌSMC

Conformed standard: ISO 8778: 1990 Pneumatic fluid power-Standard reference atmosphere, JIS B 8393: 2000: Pneumatic fluid power-Standard reference atmosphere

(3) Formula for flow rate

It is described by the practical units as following.

When $\frac{\boldsymbol{P}_{2}+0.1}{\boldsymbol{P}_{1}+0.1} \leq \boldsymbol{b}, \text{ choked flow}$ $Q = 600 \times C (P_1 + 0.1) \sqrt{\frac{293}{273 + T}}$ (1) When $\frac{P_{2+0.1}}{P_{1+0.1}} > b$, subsonic flow $\boldsymbol{Q} = 600 \times \boldsymbol{C} (\boldsymbol{P}_{1} + 0.1) \sqrt{1 - \left[\frac{\boldsymbol{P}_{2} + 0.1}{\boldsymbol{P}_{1} + 0.1} - \boldsymbol{b}\right]^{2} \sqrt{\frac{293}{273 + \boldsymbol{T}}} \dots (2)$

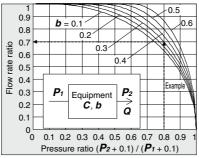
VX2 VXH VXF VX3 VXA

VXD Series

- **Q** : Air flow rate [L/min (ANR)]
- C : Sonic conductance [dm³/(s·bar)], dm³ (Cubic decimeter) of SI = L (liter).
- **b** : Critical pressure ratio [--]
- P1: Upstream pressure [MPa]
- P2 : Downstream pressure [MPa]
- T : Temperature [°C]

Note) Formula of subsonic flow is the elliptic analogous curve.

Flow rate characteristics are shown in Graph (1) For details, please use the calculation software available from SMC website.


Example)

Obtain the air flow rate for $P_1 = 0.4$ [MPa], $P_2 = 0.3$ [MPa], T = 20 [°C] when a solenoid valve is performed in C = 2 [dm³/(s·bar)] and b = 0.3.

According to formula 1, the maximum flow rate = $600 \times 2 \times (0.4 + 0.1) \times \sqrt{\frac{293}{273 + 20}} = 600 \text{ [L/min (ANR)]}$

Pressure ratio = $\frac{0.3 + 0.1}{0.4 + 0.1} = 0.8$

Based on Graph (1), it is going to be 0.7 if it is read by the pressure ratio as 0.8 and the flow ratio to be \boldsymbol{b} = 0.3. Hence, flow rate = Max. flow x flow ratio = 600 x 0.7 = 420 [L/min (ANR)]

(4) Test method

Graph (1) Flow rate characteristics

Attach a test equipment with the test circuit shown in Fig. (1) while maintaining the upstream pressure to a certain level which does not go below 0.3 MPa. Next, measure the maximum flow to be saturated in the first place, then measure this flow rate at 80%, 60%, 40%, 20% and the upstream and downstream pressure. And then, obtain the sonic conductance C from this maximum flow rate. In addition, calculate b using each data of others and the subsonic flow formula, and then obtain the critical pressure ratio b from that average.

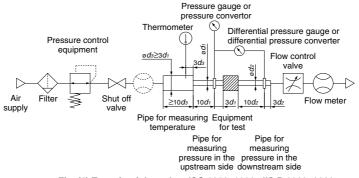


Fig. (1) Test circuit based on ISO 6358: 1989, JIS B 8390: 2000

2.2 Effective area S

) Conformed standard JIS B 8390: 2000: Pneumatic fluid power—Components using compressible fluids—	VX2
Determination of flow rate characteristics Equipment standards: JIS B 8373: Solenoid valve for pneumatics	VXK
JIS B 8379: Silencer for pneumatics JIS B 8381-1: Fittings for pneumatics—Part 1: Push-in fittings for thermoplastic resin tubing	VXD
JIS B 8381-2: Fittings for pneumatics—Part 2: Compression fittings for thermoplastic resin tubing) Definition of flow rate characteristics	VXZ
Effective area S: The cross-sectional area having an ideal throttle without friction deduced from the calcula- tion of the pressure changes inside an air tank or without reduced flow when discharging	
the compressed air in a choked flow, from an equipment attached to the air tank. This is the same concept representing the "easy to run through" as sonic conductance ${m {\cal C}}$.	
) Formula for flow rate	VXE
When $P_2 + 0.1$ 0.5, choked flow	VXP
$\frac{P_{2} + 0.1}{P_{1} + 0.1} 0.5, \text{ choked flow}$ $Q = 120 \times S (P_{1} + 0.1) \sqrt{\frac{293}{273 + T}} \dots \dots (3)$ When $P_{2} + 0.1$	VXR
When	VXH
$\frac{r^2 + 0.1}{r} > 0.5$, subsonic flow	VXF
$\boldsymbol{Q} = 240 \times \boldsymbol{S} \sqrt{(\boldsymbol{P}_2 + 0.1) (\boldsymbol{P}_1 - \boldsymbol{P}_2)} \sqrt{\frac{293}{273 + \boldsymbol{T}}} \dots \dots$	VX3
Conversion with sonic conductance C : $S = 5.0 \times C$	VXA
 Q : Air flow rate[L/min(ANR)] S : Effective area [mm²] Pr : Upstream pressure [MPa] P2 : Downstream pressure [MPa] T : Temperature [°C] Note) Formula for subsonic flow (4) is only applicable when the critical pressure ratio b is the unknown equipment. In the formula (2) by the sonic conductance C, it is the same formula as when b = 0.5. 	

(4) Test method

Attach a test equipment with the test circuit shown in Fig. (2) in order to discharge air into the atmosphere until the pressure inside the air tank goes down to 0.25 MPa (0.2 MPa) from an air tank filled with the compressed air at a certain pressure level (0.5 MPa) which does not go below 0.6 MPa. At this time, measure the discharging time and the residual pressure inside the air tank which had been left until it turned to be the normal values to determine the effective area **S**, using the following formula. The volume of an air tank should be selected within the specified range by corresponding to the effective area of an equipment for test. In the case of JIS B 8379, the pressure values are in parentheses and the coefficient of the formula is 12.9.

$$S = 12.1 \frac{V}{t} \log_{10} \left(\frac{P_{s} + 0.1}{P + 0.1} \right) \sqrt{\frac{293}{T}}$$
(6)

$$S : Effective area [mm2]$$

$$V : Air tank capacity [L]$$

$$t : Discharging time [s]$$

$$Ps : Pressure inside air tank$$
before discharging [MPa]

$$P : Residual pressure inside air tank$$
after discharging [MPa]

$$T : Temperature inside air tank$$
before discharging [K]

Fig. (2) Test circuit based on JIS B 8390: 2000

2.3 Flow coefficient Cv factor

The United States Standard ANSI/(NFPA)T3.21.3: R1-2008R: Pneumatic fluid power—Flow rating test procedure and reporting method for fixed orifice components

This standard defines the Cv factor of the flow coefficient by the following formula that is based on the test conducted by the test circuit analogous to ISO 6358.

$$Cv = \frac{Q}{114.5\sqrt{\frac{\Delta P \left(P_2 + P_a\right)}{T_1}}}$$
(7)

△**P**: Pressure drop between the static pressure tapping ports [bar]

P₁ : Pressure of the upstream tapping port [bar gauge]

- P_2 : Pressure of the downstream tapping port [bar gauge]: $P_2 = P_1 \Delta P$
- Q : Flow rate [L/s standard condition]
- Pa : Atmospheric pressure [bar absolute]

T1 : Upstream absolute temperature [K]

Test conditions are $\langle P_1 + P_a = 6.5 \pm 0.2$ bar absolute, $T_1 = 297 \pm 5$ K, 0.07 bar $\leq \Delta P_1$ 0.14 bar.

This is the same concept as effective area **A** which ISO 6358 stipulates as being applicable only when the pressure drop is smaller than the upstream pressure and the compression of air does not become a problem.

3. Process fluid control equipment

(1) Conformed standard

160

IEC60534-1: 2005: Industrial-process control valves. Part 1: control valve terminology and general considerations

IEC60534-2-3: 1997: Industrial-process control valves. Part 2: Flow capacity, Section Three-Test procedures

JIS B 2005-1: 2012: Industrial-process control valves – Part 1: Control valve terminology and general considerations JIS B 2005-2-3: 2004: Industrial-process control valves – Part 2: Flow capacity – Section 3: Test procedures Equipment standards: JIS B 8471: Solenoid valve for water

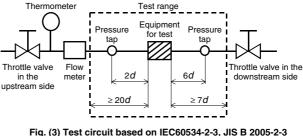
JIS B 8472: Solenoid valve for steam JIS B 8473: Solenoid valve for fuel oil

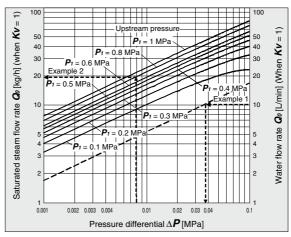
(2) Definition of flow rate characteristics

Kv factor: Value of the clean water flow rate represented by m³/h that runs through the valve (equipment for test) at 5 to 40°C, when the pressure difference is 1 x 105 Pa (1 bar). It is calculated using the following formula:

Conversion of flow coefficient:

Kv = 0.865 *Cv*(11)


Here,


Cv factor: Value of the clean water flow rate represented by US gal/min that runs through the valve at 40 to 100°F, when the pressure difference is 1 lbf/in² (psi)

Value is different from *Kv* and *Cv* factors for pneumatic purpose due to different test method.

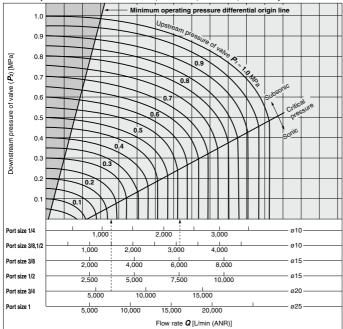
(4) Test method

Connect the equipment for the test to the test circuit shown in Fig. (3), and run water at 5 to 40° C. Then, measure the flow rate with a pressure difference where vaporization does not occur in a turbulent flow (pressure difference of 0.035 MPa to 0.075 MPa when the inlet pressure is within 0.15 MPa to 0.6 MPa). However, as the turbulent flow is definitely caused, the pressure difference needs to be set with a large enough difference so that the Reynolds number does not fall below 1 x 105, and the inlet pressure needs to be set slightly higher to prevent vaporization of the liquid. Substitute the measurement results in formula (8) to calculate Kv.

Example 1)

Graph (2) Flow rate characteristics

Obtain the pressure difference when water [15 L/min] runs through the solenoid valve with a $Kv = 1.5 \text{ m}^3/\text{h}$. As the flow rate when Kv = 1 is calculated as the formula: $Q_0 = 15 \text{ x} 1/1.5 = 10 \text{ [L/min]}$, read off ΔP when Q_0 is 10 [L/min] in Graph (2). The reading is 0.036 [MPa].

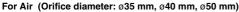

Example 2)

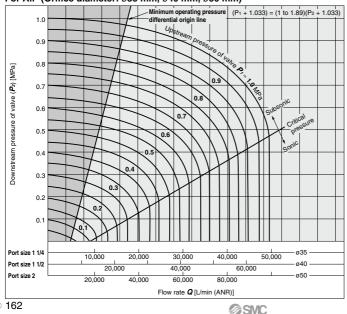
Obtain the saturated steam flow rate when $P_1 = 0.8$ [MPa] and $\Delta P = 0.008$ [MPa] with a solenoid valve with a Kv = 0.05 [m³/h]. Read off Q_0 when P_1 is 0.8 and ΔP is 0.008 in Graph (2), the reading is 20 kg/h. Therefore, the flow rate is calculated as the formula: $Q = 0.05/1 \times 20 = 1$ [kg/h].

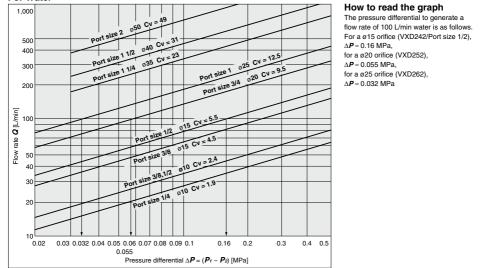
VXD Series **Flow Rate Characteristics**

Note) Use this graph as a guide. In the case of obtaining an accurate flow rate, refer to pages 157 through to 161.

For Air (Orifice diameter: ø10 mm, ø15 mm, ø20 mm, ø25 mm)


How to read the graph


The sonic range pressure to generate a flow rate of 6000 L/min (ANR) is as follows. For a ø15 orifice (VXD240 Port size 3/8). **P**1 ≈ 0.57 MPa.


for a ø20 orifice (VXD250 /Port size 3/4). P1 ≈ 0.22 MPa

∆Warning

In the area located left to the minimum operating pressure differential origin line in the flow rate characteristics table, the minimum operating pressure is not generated. Do not use the product in this area as this may cause operation failure (valve opening failure, valve closing failure) or damage of the valve. Select valves with suitable size.

For Water

⊘SMC

VX2

VXK

VXD

VXZ

VXS

VXB

VXE

VXP

VXR VXH

VXF

VX3 VXA

Be sure to read this before handling the products. Refer to back page 50 for Safety Instructions and pages 17 to 19 for 2 Port Solenoid Valve for Fluid Control Precautions.

Design

▲Design

 Cannot be used as an emergency shutoff valve etc. The valves presented in this catalog are not designed for safety applications such as an emergency shutoff valve. If the valves are used in this type of system, other reliable safety assurance measures should also be adopted.

2. Extended periods of continuous energization

The solenoid coil will generate heat when continuously energized. Avoid using in a tightly shut container. Install it in a well-ventilated area. Furthermore, do not touch it while it is being energized or right after it is energized.

3. Closed liquid circuit

In a closed circuit, when liquid is static, pressure could rise due to changes in temperature. This pressure rise could cause malfunction and damage to components such as valves. To prevent this, install a relief valve in the system.

4. Actuator drive

When an actuator, such as a cylinder, is to be driven using a valve, take appropriate measures to prevent potential danger caused by actuator operation.

5. Pressure (including vacuum) holding

It is not usable for an application such as holding the pressure (including vacuum) inside of a pressure vessel because air leakage is entailed in a valve.

- 6. When the conduit type is used as equivalent to an IP65 enclosure, install a wiring conduit etc.
- When an impact, such as water hammer etc., caused by the rapid pressure fluctuation is applied, the solenoid valve may be damaged. Give an attention to it.

Selection

Marning

1. Minimum operating pressure differential

Be aware that even if the pressure difference is above the minimum operating pressure differential when the valve is closed, the pressure difference may fall below the minimum operating pressure differential when the valve opens, depending on the capacity of the supply source (pumps, compressors, etc.,) or the type of pipe restrictions (the piping is bent continuously due to elbow or tee, or narrow tube nozzle is installed in the end). If the product is used below the minimum operating pressure, the operation becomes unstable, which might cause valve opening or closing failure, or oscillation, leading to failure due to insufficient pressure differential. Select an appropriate valve size with reference to the flow rate characteristics and flow rate characteristics table (on pages 157 through to 163).

Selection

▲Warning

2. Fluid

1) Type of fluid

Select an appropriate valve with reference to the table below for the general fluid. Before using a fluid, check whether it is compatible with the materials of each model by referring to the fluids listed in this catalog. Use a fluid with a kinematic viscosity of 50 mm²/s or less.

Applicable fluid

For Air	Air
For Water	Air/Water
For Oil	Air/Water/Oil
For Heated water	Air(up to 99°C)/Water/Heated water

For High temperature oil Air(up to 99°C)/Water/High temperature oil

Flammable oil, Gas

Do not use the product with combustion-supporting or flammable fluids.

3) Corrosive gas

Cannot be used since it will lead to cracks by stress corrosion or result in other incidents.

- 4) Depending on water quality, a brass body can cause corrosion and internal leakage may occur. If such abnormalities occur, exchange the product for a stainless steel body.
- Use an oil-free specification when any oily particle must not enter the passage.
- 6) Applicable fluid on the list may not be used depending on the operating condition. Give adequate confirmation, and then determine a model, just because the compatibility list shows the general case.

3. Fluid quality

<Air>

1) Use clean air.

Do not use compressed air that contains chemicals, synthetic oils including organic solvents, salt or corrosive gases, etc., as it can cause damage or malfunction.

2) Install an air filter.

Install an air filter close to the valve on the upstream side. A filtration degree of 5 μm or less should be selected.

3) Install an aftercooler or air dryer, etc.

Compressed air that contains excessive drainage may cause malfunction of valves and other pneumatic equipment. To prevent this, install an aftercooler or air dryer, etc.

 If excessive carbon powder is generated, eliminate it by installing a mist separator on the upstream side of valves.

If excessive carbon powder is generated by the compressor, it may adhere to the inside of the valves and cause a malfunction.

Refer to Best Pneumatics No.5 for further details on compressed air quality.

Be sure to read this before handling the products. Refer to back page 50 for Safety Instructions and pages 17 to 19 for 2 Port Solenoid Valve for Fluid Control Precautions.

Selection

Marning

<Water>

The use of a fluid that contains foreign objects can cause problems such as malfunction and seal failure by promoting wear of the valve seat and armature, and by sticking to the sliding parts of the armature etc. Install a suitable filter (strainer) immediately upstream from the valve. As a general rule, use 80 to 100 mesh.

The supply water includes materials that create a hard sediment or sludge such as calcium and magnesium. Sediment and sludge can cause the valve to not operate properly. Therefore, install a water softening device, which removes these materials, and a filter (strainer) directly in front of the valve.

<0il>

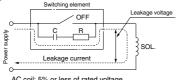
Generally, FKM is used as seal material, as it is resistant to oil. The resistance of the seal material may deteriorate depending on the type of oil, manufacturer or additives. Check the resistance before using.

4. Ambient environment

Use within the operable ambient temperature range. Check the compatibility between the product's composition materials and the ambient atmosphere. Be certain that the fluid used does not touch the external surface of the product.

5. Countermeasures against static electricity

Take measures to prevent static electricity since some fluids can cause static electricity.


6. Low temperature operation

- The valve can be used in an ambient temperature of between -10 to -20°C. However, take measures to prevent freezing or solidification of impurities, etc.
- 2) When using valves for water application in cold climates, take appropriate countermeasures to prevent the water from freezing in tubing after cutting the water supply from the pump, by draining the water, etc. When warming by a heater, etc., be careful not to expose the coil portion to a heater. Installation of a dryer, heat retaining of the body is recommended to prevent a freezing condition in which the dew point temperature is high and the ambient temperature is low, and the high flow runs.

∆Caution

1. Leakage voltage

When the solenoid valve is operated using the controller, etc., the leakage voltage should be the product allowable leakage voltage or less. Particularly when using a resistor in parallel with a switching element and using a C-R element (surge voltage suppressor) to protect the switching element, take note that leakage current will flow through the resistor, C-R element, etc., creating a possible danger that the valve may not turn off.

AC coil: 5% or less of rated voltage DC coil: 2% or less of rated voltage

Selection

▲Caution

- Selecting model Material depends on fluid. Select optimal models for the fluid.
- When the fluid is oil. The kinematic viscosity must not exceed 50 mm²/s.

Mounting

Warning

- 1. If air leakage increases or equipment does not operate properly, stop operation. After mounting is completed, confirm that it has been done
 - correctly by performing a suitable function test.
- 2. Do not apply external force to the coil section. When tightening is performed, apply a wrench or other tool to the outside of the piping connection parts.
- 3. Mount a valve with its coil position upward, not downward. When mounting a valve with its coil positioned downward, foreign objects in the fluid will adhere to the iron core leading to a malfunction Especially for strict leakage control such as

foreign objects in the fluid will adhere to the iron core leading to a malfunction. Especially for strict leakage control, such as with vacuum applications and non-leak specifications, the coil must be positioned upward.

Do not warm the coil assembly with a heat insulator etc.

Use tape, heaters, etc., for freeze prevention on the piping and body only. They can cause the coil to burn out.

- Secure with brackets, except in the case of steel piping and copper fittings.
- Avoid sources of vibration, or adjust the arm from the body to the minimum length so that resonance will not occur.

7. Painting and coating

Warnings or specifications printed or labeled on the product should not be erased, removed or covered up.

Be sure to read this before handling the products.

Refer to back page 50 for Safety Instructions and pages 17 to 19 for 2 Port Solenoid Valve for Fluid Control Precautions.

Disassembly/Assembly Procedures

ACaution

1. Before disassembling, be sure to shut off the power supply and pressure supply, and then release the residual pressure.

Disassembly

<N.C.>

- 1) Loosen the mounting screws.
- The coil assembly, stopper, return spring, armature assembly and body can be removed.

<N.O.>

- 1) Loosen the mounting screws.
 - The coil assembly, push rod assembly, O-rings, adapter and body can be removed.

Assembly

<Common to N.C. and N.O.>

- 1) Mount the components on the body in the reverse order of disassembly
- 2) Push the coil assembly against the body and tighten the screws two or more rounds diagonally (Fig. 2) in the status that there are no gaps between the coil assembly and body (Fig. 1).

Tighten the screws in the order of " $1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 4$ ".

Proper Tightening Torque N-m

0.5
0.7
0.7

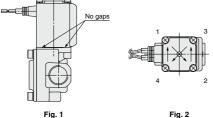
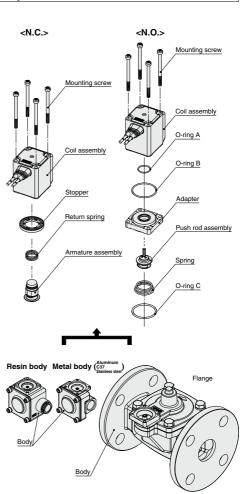



Fig. 2

- * After tightening the screws, make sure that there are no gaps between the coil and body (Fig. 1).
- * After the disassembly and assembly have been completed, make sure that no leak occurs from the seal. Additionally, when restarting the valve, make sure that the valve operates correctly after checking the safety.

Be sure to read this before handling the products. Refer to back page 50 for Safety Instructions and pages 17 to 19 for 2 Port Solenoid Valve for Fluid Control Precautions.

Piping

A Warning

1. During use, deterioration of the tube or damage to the fittings could cause tubes to come loose from their fittings and thrash about.

To prevent uncontrolled tube movement, install protective covers or fasten tubes securely in place.

2. For piping the tube, fix the product securely using the mounting holes so that the product is not in the air.

A Caution

1. Preparation before piping

Before piping is connected, it should be thoroughly blown out with air (flushing) or washed to remove chips, cutting oil and other debris from inside the pipe.

Install piping so that it does not apply pulling, pressing, bending or other forces on the valve body.

- 2. Avoid connecting ground lines to piping, as this may cause electric corrosion of the system.
- 3. Always tighten threads with the proper tightening torque. When attaching fittings to valves, tighten with the proper tightening torque shown below.

Tightening Torgue for Piping

Connection thread	Proper tightening torque (N·m)
Rc1/8	7 to 9
Rc1/4	12 to 14
Rc3/8	22 to 24
Rc1/2	00 to 00
Rc3/4	28 to 30
Rc1	36 to 38

- 4. When connecting piping to a product Avoid mistakes regarding the supply port etc.
- 5. If the regulator and solenoid valve are connected directly, chattering may occur as both of them generate vibration. Do not connect them.
- 6. If the effective area of piping on the fluid supply side is restricted, the operation may become unstable due to differential pressure fluctuation during valve operation. The piping on the fluid supply side should match the port size of the valve.

Recommended Piping Conditions

1. When connecting tubes using One-touch fittings, provide some spare tube length shown in Fig. 1, recommended piping configuration.

Also, do not apply external force to the fittings when binding tubes with bands etc. (see Fig. 2.)

Recommended Piping Conditions

VX2	Unit: mm				
VAZ	Straight		Nounting pitch	N	Tube
	portion length	Polyurethane tube	Soft nylon tube	Nylon tube	size
VXK	16 or more	25 or more	35 or more	44 or more	ø1/8"
	30 or more	39 or more	66 or more	84 or more	ø6
VXD	32 or more	57 or more	70 or more	89 or more	ø1/4"
	40 or more	52 or more	88 or more	112 or more	ø8
VXZ	50 or more	69 or more	110 or more	140 or more	ø10
VAL	60 or more	88 or more	132 or more	168 or more	ø12

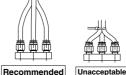


Fig. 2 Binding tubes with bands

Wiring

⚠Warning

1. The solenoid valve is an electrical product. For safety. install an appropriate fuse and circuit breaker before use.

VXS

VXB

VXE

When using multiple solenoid valves, it is not sufficient to merely install one fuse on the inlet side. In order to ensure the safety of the devices, select and install a fuse for each circuit.

2. Do not apply AC voltage to Class "H" coil AC type unless it is built in full-wave rectifier, or the coil will be damaged.

▲Caution

- 1. As a rule, use electrical wire with a cross sectional area of 0.5 to 1.25 mm² for wiring. Furthermore, do not allow excessive force to be applied to the lines.
- 2. Use electrical circuits which do not generate chattering in their contacts.
- 3. Use voltage which is within ±10% of the rated voltage. In cases with a DC power supply where importance is placed on responsiveness, stay within \pm 5% of the rated value. The voltage drop is the value in the lead wire section connecting the coil.
- 4. When a surge from the solenoid affects the electrical circuitry, install a surge voltage suppressor etc., in parallel with the solenoid. Or, adopt an option that comes with the surge voltage protection circuit. (However, a surge voltage occurs even if the surge voltage protection circuit is used.)

Fig. 1 Recommended piping configuration

Be sure to read this before handling the products.

Refer to back page 50 for Safety Instructions and pages 17 to 19 for 2 Port Solenoid Valve for Fluid Control Precautions.

Operating Environment

A Warning

- 1. Do not use in an atmosphere having corrosive gases, chemicals, sea water, water, water vapor, or where there is direct contact with any of these.
- 2. Do not use in explosive atmospheres.
- 3. Do not use in locations subject to vibration or impact.
- 4. Do not use in locations where radiated heat will be received from nearby heat sources.
- 5. Employ suitable protective measures in locations where there is contact with water droplets, oil or welding spatter, etc.

Maintenance

\land Warning

1. Removing the product

The valve will reach a high temperature when used with high temperature fluids. Confirm that the valve temperature has dropped sufficiently before performing work. If touched inadvertently, there is a danger of being burned.

- 1) Shut off the fluid supply and release the fluid pressure in the system.
- 2) Shut off the power supply.
- Dismount the product.

2. Low frequency operation

Switch valves at least once every 30 days to prevent malfunction. Also, in order to use it under the optimum state, conduct a regular inspection once a half year.

▲Caution

1. Filters and strainers

- 1) Be careful regarding clogging of filters and strainers.
- 2) Replace filter elements after one year of use, or earlier if the pressure drop reaches 0.1 MPa.
- Clean strainers when the pressure drop reaches 0.1 MPa.

2. Lubrication

When using after lubricating, never forget to lubricate continuously. 3. Storage

In case of long term storage after use, thoroughly remove all moisture to prevent rust and deterioration of rubber materials, etc.

4. Exhaust the drainage from the air filter periodically.

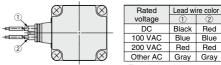
Operating Precautions

AWarning

- If there is a possibility of reverse pressure being applied to the valve, take countermeasures such as mounting a check valve on the downstream side of the valve.
- When problems are caused by a water hammer, install water hammer relief equipment (accumulator, etc.), or use an SMC water hammer relief valve (VXR series). For details, please consult with SMC.
- 3. When the pilot type 2 port solenoid valve is closed, and pressure is applied suddenly due to the starting of fluid supply source such as pump and compressor, the valve may open momentarily and fluid may leak.

Operating Precautions

≜ Warning


4. If the product is used in the conditions in which rapid decrease in the inlet pressure of the valve and rapid increase in the outlet pressure of the valve are repeated, excessive stress will be applied to the diaphragm, which causes the diaphragm to be damaged and dropped, leading to the operation failure of the valve. Check the operating conditions before use.

Electrical Connections

▲Caution

Grommet

Class B coil: AWG20 Insulator O.D. 2.6 mm Class H coil: AWG18 Insulator O.D. 2.1 mm

* There is no polarity.

DIN terminal

Disassembly

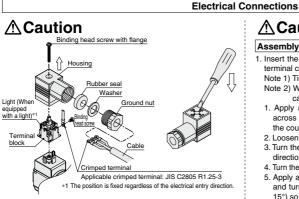
- After loosening the binding head screw with flange, then if the housing is pulled in the direction of the arrow, the connector will be removed from the solenoid valve.
- 2. Pull out the binding head screw with flange from the housing.
- There is a cutout on the bottom of the terminal block. Insert a small flat head screwdriver, etc. into this cutout, and remove the terminal block from the housing. (See next page)
- 4. Remove the ground nut, and pull out the washer and the rubber seal.

Wiring

- Pass the cable through the ground nut, washer and rubber seal in this order, and insert these parts into the housing.
- Loosen the binding head screw of the terminal block, then insert the core wire or the crimped terminal of the lead wire into the terminal, and securely fix it with the binding head screw. The binding head screw of the terminal block is M3.

Note 1) Tighten the screw to a torque of between 0.5 and 0.6 N·m. Note 2) Cable O.D.: ø6 to ø12 mm

Note 3) For an outside cable diameter of ø9 to 12 mm, remove the internal parts of the rubber seal before using.


Assembly

- Pass the cable through the ground nut, washer, rubber seal and the housing in this order, and connect to the terminal block. Then, set the terminal block inside the housing. (Push in the terminal block until it snaps into position.)
- Insert the rubber seal and the washer in this order into the cable entry of the housing, and then tighten the ground nut securely.
- Insert the gasket between the bottom part of the terminal block and the plug attached to the equipment, and then insert the binding head screw with flange from the top of the housing, and tighten it.
 - Note 1) Tighten the screw to a torque of between 0.5 and 0.6 N·m.
 - Note 2) The orientation of the connector can be changed in steps of 90° by changing the method of assembling the housing and the terminal block.

Be sure to read this before handling the products. Refer to back page 50 for Safety Instructions and pages 17 to 19 for 2 Port Solenoid Valve for Fluid Control Precautions.

Internal connections are as shown below. Make connections to the power supply accordingly.

Terminal no.	1	2	
DIN terminal	+(-)	-(+)	
* Thoro is no polority			

* There is no polarity

DIN (EN175301-803) Terminal

This DIN terminal corresponds to the Form A DIN connector with an 18 mm terminal pitch, which complies with EN175301-803B.

Conduit terminal

Disassembly

1. Loosen the mounting screw, and remove the terminal cover from the conduit terminal.

Wiring

- 1. Insert the cable into the conduit terminal.
- 2. Loosen the screw with UP terminal of the conduit terminal, then insert the core wire or the crimped terminal of the lead wire into the terminal, and securely fix it with the screw with UP terminal. Note 1) Tighten the screw to a torque of between 0.5 and 0.6 N·m.

∧ Caution

Assembly

1. Insert the gasket into the conduit terminal, and then clamp the terminal cover with the mounting screw.

Note 1) Tighten the screw to a torque of between 0.5 and 0.6 N·m. Note 2) When changing the orientation of the conduit terminal, carry out the following procedure.

VX2

VXK

VXD

VXZ

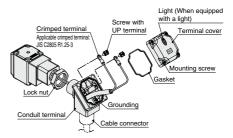
VXS

VXB

VXE

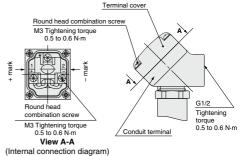
VXP

VXR


VXH

VXF

VX3


VXA

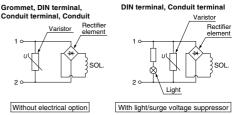
- 1. Apply a tool (monkey wrench, spanner, etc.) to the width across flats of the conduit terminal, and turn the terminal in the counterclockwise direction.
- 2. Loosen the lock nut.
- 3. Turn the conduit terminal in the clamping direction (clockwise direction) to about 15° ahead of the desired position.
- 4. Turn the lock nut by hand to the coil side until it is lightly tightened.
- 5. Apply a tool to the width across flats of the conduit terminal, and turn it to the desired position (through an angle of about 15°) so as to clamp the conduit terminal.
- Note) When changing the orientation by applying additional tightening force to the conduit terminal from the factoryset position, turn no more than one half a turn.

Make connections according to the marks shown below.

- · Use the tightening torques below for each section.
- · Properly seal the terminal connection (G1/2) with the special wiring conduit etc.

SMC

169 ©


Be sure to read this before handling the products. Refer to back page 50 for Safety Instructions and pages 17 to 19 for 2 Port Solenoid Valve for Fluid Control Precautions.

Electrical Connections Electrical Circuits ∧ Caution **A**Caution Conduit [DC circuit] When used as an IP65 equivalent, use seal to install the wiring Grommet, Flat terminal Grommet, DIN terminal, Conduit terminal, Conduit conduit. Also, use the tightening torque below for the conduit. Varistor Class B coil: AWG20 Insulator O.D. 2.5 mm Class H coil: AWG18 Insulator O.D. 2.1 mm 1 (+, -) ~ 1 (+, -) 0 Lead wire ₹soi SOL 2 (-, +) 0 2(-,+)0 Without electrical option With surge voltage suppressor **DIN terminal, Conduit terminal** Seal Wiring conduit (Connection G1/2 Tightening torque 0.5 to 0.6 N·m) Varistor 1(+-)Description Lead wire color Part no. Rated voltage SOL (1) 2 Seal VCW20-15-6 DC Black Red Note) Please order separately. 100 VAC Blue Blue 200 VAC Red Red Other AC Grav Grav With light/surge voltage suppressor

There is no polarity.

[AC circuit]

* For AC, the standard product is equipped with surge voltage suppressor.

Note 1) Coil for DIN terminal H type with AC voltage does not have full-wave rectifier. Full-wave rectifier is built in the DIN connector. Refer to page 155 to order it as an accessory.

One-touch Fitting

For information on handling One-touch fittings and on appropriate tubing, refer to page 167 and the Fittings & Tubing section of the "Handling Precautions for SMC Products" on the SMC website.